Lecture 1: Course Overview

CS 598: Network Security Matthew Caesar January 15, 2013

1

Networks are Important

- Networks propagate information
- Information is the enemy of evildoers
 - They can no longer hide in the shadows
 - Can enable coordination against them
- Internet has become massive vector for social change
 - Arab Spring, Anonymous, Jyoti Singh, etc

Networks are Important

- Every aspect of our society is tightly coupled with the functioning of the Internet
 - Business and financial transactions, education and research, medicine, power grid and resource infrastructures
- Internet adds estimated trillions of dollars to world economy

Networks Face Threats

- The power for a single individual to cause harm, is enormous
- This problem is getting worse
 - Network crime is a \$114B industry
 - Entire governments are funding cyberattacks
- Arms race between the black-hats and the white-hats
 - This battle will end someday
 - It is not clear who will win

Network Security is Challenging

- Internet is probably the biggest and most complex thing ever created
 - Complex intertwining of systems and protocols
- Complexity leads to rich variety of vulnerabilities
 - Protocol bugs, misconfiguration, DoS attacks, spam, persistent instability
- Pervasiveness leads to rich variety of attackers/attacks
 - Script kiddies, cyberwarfare, natural disasters, careless operators, entropy

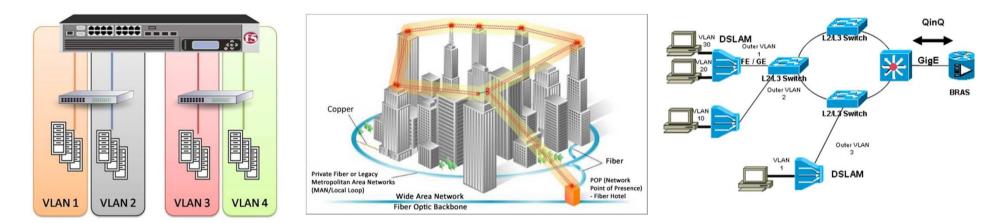
This course

- How to protect networks from harm
 - Common threats/vulnerabilities in networks and their constituent protocols
 - Countermeasures and design principles to build resilient and secure networks
 - Very rich environment for research
- Covers network security, as well as relevant advanced networking background
 - Teaching them together makes each easier to learn
 - Knowledge of both is synergistic

Course Syllabus

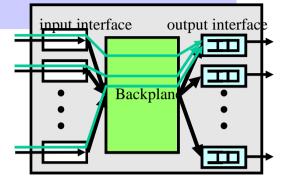
- Physical network security
- Long-haul network security
- Data center and enterprise network security
- ISP network security
- Router mechanisms for security
- Internet security architectures
- Security of networked systems
- The big picture
- Hot topics in network security

Physical Network Security



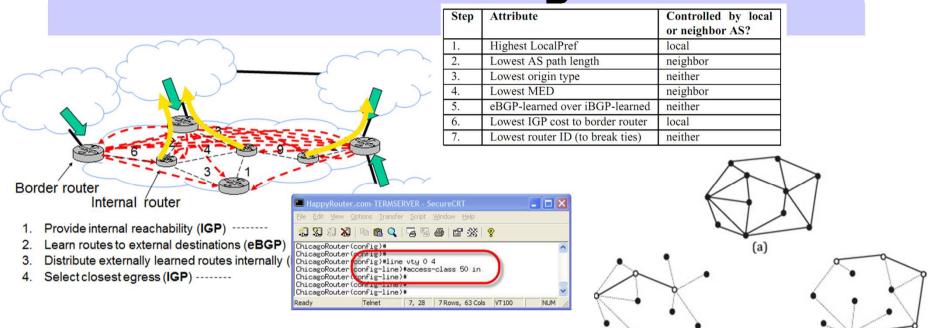
8

- How to keep physical communication lines secure
 - Advanced overview of copper, optical, and wireless communication
 - Long-haul networks, laying techniques, cable ratings and technologies, wire mechanics, noise/RF, TDR analysis, scattering/absorption, submarine cabling, physical wiretapping, physical attacks on cabling, satellite networks and GPS, 802.11 attacks


Data Center and Enterprise Network Security



- LAN technologies: Overview of Ethernet, Spanning tree protocol, VLANs, QinQ, DHCP, DTP/VTP, Power over Ethernet, HSRP/VRRP, ACLs, firewalls, middleboxes
- LAN security mechanisms and attacks: VLAN hopping, Tag stack attack, Broadcast floods, ARP spoofing, DHCP DoS, DHCP and DNS hijacking, Spanning tree attacks, Control Plane Policing, Link Layer Security, Port/BPDU guard, 802.1AE/encryption, NetFlow, RMON


Router Mechanisms for Security

- Router memory/hardware technologies (TCAM/SRAM/DRAM) and architectures
- Matching algorithms: fixed-length and prefix matching, binary tries, patricia tries, skip counts and path compression, perfect hashing, parallel binary search
- Classification algorithms: geometric classification, hierarchical tries, setpruning tries, crossproducting
- Scheduling algorithms: round robin, FQ, WFQ, Stochastic and self-clocked FQ, virtual clocks and fluid flow, max-min fairness, DRR,
- Intrusion detection system and patter matching algorithms: Boyer-Moore, Approximate string matching, state monitoring and reassembly

Defensive Configuration

- Internet routing and policy
 - BGP and OSPF, BGP decision process, intra vs interdomain routing, route redistribution, route reflection, peering, policy disputes, ECMP

(b)

(c)

- Strategies for resilient and secure configuration
- Designing robust network topologies
 - Hub-and-spoke, backbone networks, points of presence, multi-homing, topology optimization algorithms

The Big Picture

FC

- Ethics in networked security: Philosophical foundations (deontology, relativism, utilitarianism, social contract), codes of ethics, hot topics
- Law: Legal foundations (intellectual property law, jurisdiction and sovereignty), cybercrime, data privacy, liability law, open issues
- Regulation: Standards bodies (ITU, ICANN, IGF, etc), FCC regulations, UN regulations, open issues
- Environmental security: environmental design, mantraps, bollards, territorial surveillance, glass and fire ratings, perimiiter security, electrical power security, case study (Google)

Hot Topics in Network Security

- Security of Software-Defined Networks
- Military Security and Cyberwarfare
- Security of Big Data
- Internet Security Architectures
- Programmable Networks and Network Verification
- More to come...

Who am I?

- Faculty in CS department
- Research: networking, security, systems
- PhD from UC Berkeley in 2007
- Industrial experience at AT&T Labs, Microsoft Research, HP, Nokia DSL; helped found two startups on core networking/security systems; ongoing partnerships/tech transfer with Cisco, DARPA, NSA, Boeing

- I like designing/building/deploying largescale software systems that are grounded in strong theoretical principles
- Office: 3118 SC

Grading

Project	60%
Class participation, lecture presentation	25%
Paper reviews	15%

• This is a graduate-level course – grade is less important than what you learn

Readings

Goal is to read and understand core technologies in this field

- Read required readings before class

- Write a short 1 paragraph review
 - Goal: synthesize main ideas/concepts
 - *Critique* the reading, do not summarize
 - Also list questions you had about the paper, and ask them in class discussion
 - Post your review on Piazza (CS598MCC) ¹⁶

Lecture

- My plan: ~55 mins lecture, ~25 mins discussion
 - I'll lead some lectures
 - Sign up for topics you'd like to present
- Lectures are <u>not</u> paper presentations
 - Lectures <u>taxonomize</u> the core concepts in an area
 - Lectures focus on fundamentals
 - A good lecture's content should be "useful" 5-10 years from now
 - Algorithms, concepts, rules of thumb, core questions; not protocol headers, historical details, etc. 17

Lecture: Steps

- Choose one of my lecture topics, or propose your own
 - Pick a partner
- Lecture covers an <u>area</u>, not a paper
 - You will need to perform a literature survey to learn the area
 - You will need to think deeply about what topics grad students should know from that area
- Three checkpoints:
 - Send me a 1 paragraph proposal, outline, draft of slides
 - Details on website
- I am here to help you

Project Expectations

- Aim high!
 - A good project could become the basis for
 - Publication: PETS, HotCloud, CoNEXT, ACSAC, NDSS, HotNets, CCS, etc. deadlines coming up.
 - Ph.D. thesis
 - Focus on *impact*
- Your project need not be Oakland-quality but should be conference-worthy with a little more effort
- I am here to help you
- New project ideas posted in a few weeks

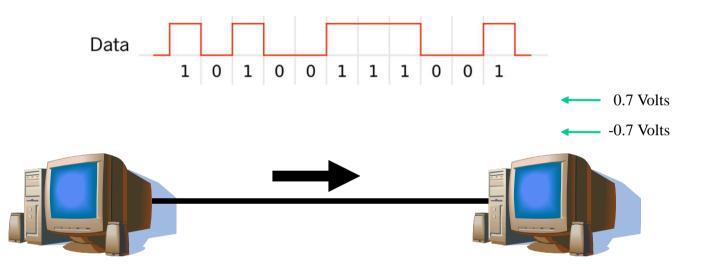
Research Project: Steps

- Choose one of my project ideas or you can come up with your own
- Pick your project, partner, and submit a one-page proposal describing
 - The problem you are solving
 - Your plan of attack with milestones and dates
- Have a one-on-one meeting with me to discuss your project topic
- Give 2 short (5-10 minute) presentations on your progress
- Poster session
- Submit project papers at end of semester

Send me the following information

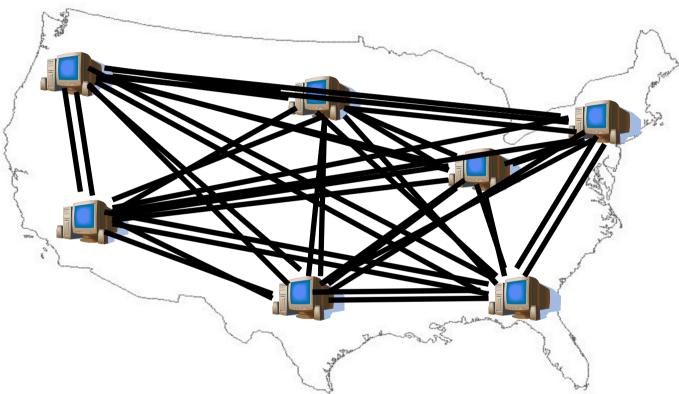
• Tonight, please fill out the following survey

- <u>https://docs.google.com/spreadsheet/viewform?form</u>
 <u>key=dGxqcEpCWVBqQzZKMWILRGFQS3c3Mmc6MQ</u>
- Also, make sure you're on the course mailing list
 - You should receive an email from me by end of today

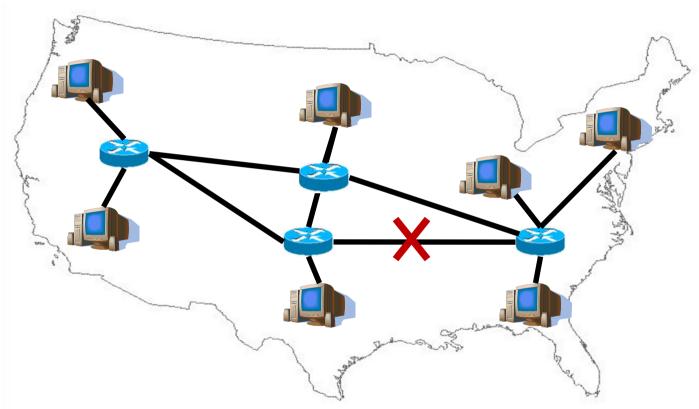

Rest of Today

• Background on networking

The Internet

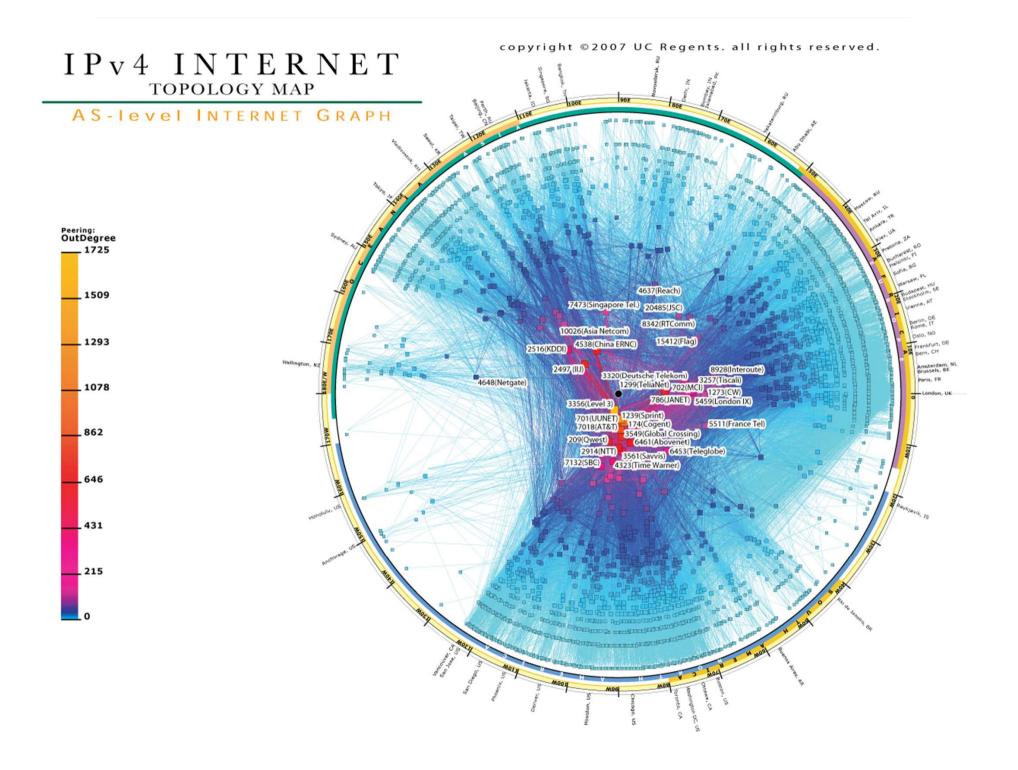

- Global scale, general purpose, heterogeneous technologies, public, computer network
- Vast distributed system comprising
 - 650 million hosts (potentially malicious)
 - ->26,000 ISPs (potentially competing)

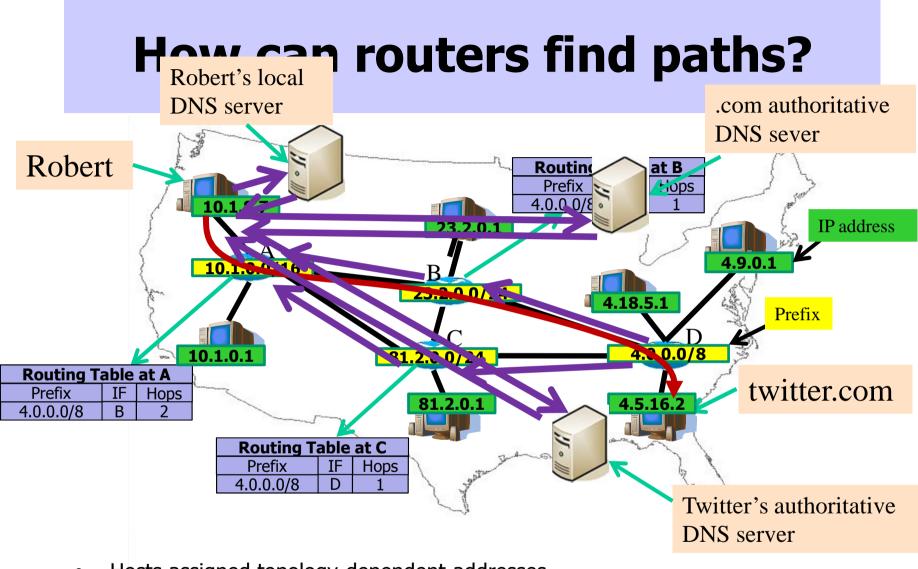
How can Two Hosts Communicate?


- Encode information on modulated "Carrier signal"
 - Phase, frequency, and amplitude modulation, and combinations thereof
 - Ethernet: self-clocking Manchester coding ensures one transition per clock
 - Technologies: copper, optical, wireless

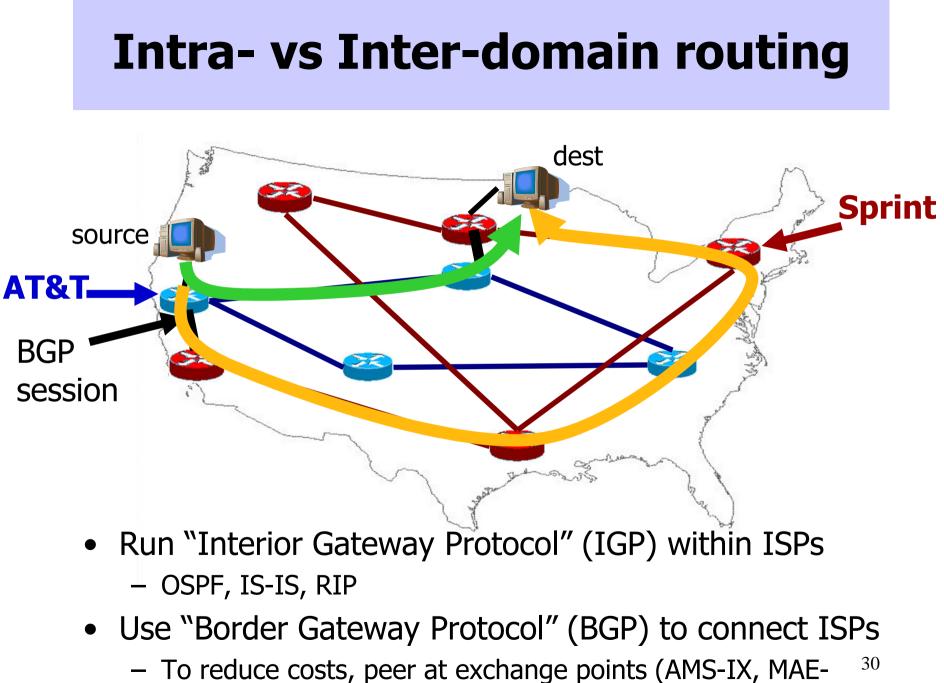
How can many hosts communicate?

- Naïve approach: full mesh
- Problem:
 - Obviously doesn't scale to the 570,937,778 hosts in the Internet (estimated, Aug 2008)


How can many hosts communicate?



- Multiplex traffic with routers
- Goals: make network robust to failures and attack, maintain spare capacity, reduce operational costs
 - More on "topology" in Lectures 2,3


Complete Network Assets : XO Communications

- Hosts assigned topology-dependent addresses
- Routers advertise address blocks ("prefixes")
- Routers compute "shortest" paths to prefixes
- Map IP addresses to names with DNS
- More on "Routing" and "Naming" in Lectures 3,4,7

EAST)

Do IP networks manage themselves?

- In some sense, yes:
 - TCP senders send less traffic during congestion
 - Routing protocols adapt to topology changes
- But, does the network run *efficiently*?
 - Congested link when idle paths exist?
 - High-delay path when a low-delay path exists?
- How should routing adapt to the traffic?
 - Avoiding congested links in the network
 - Satisfying application requirements (e.g., delay)
- ... essential questions of traffic engineering

What if hosts misbehave?

- Easy to send traffic to anyone else: even if they don't want it!
 - spam, DoS, phishing, worms,
- Possible defenses:
 - Monitoring+filtering: detect attack and install filters to drop traffic
 - Capabilities: only accept traffic that carries a "capability"
- More in Lectures 20-21

How can researchers study networks?

- Techniques: Measurement, Simulation, Emulation, Deployment
- Testbeds: Planetlab, Emulab, ns-2,
- Data sources: Abilene Observatory, Routeviews, CAIDA
- Software: Click, Quagga, and XORP software routers
- If you've got an idea, this course will help you figure out how to evaluate it

Summary

- Course administrivia
- Course topic highlights
- Details on web site: http://www.cs.illinois.edu/~caesar/netsec