
Lecture 4: Device Security and
Router Mechanisms

CS 598: Network Security

Matthew Caesar

February 7, 2011

1

This lecture

• Network devices

– Their internals and how they work

• Network connections

– How to plug devices together

2

3

IP Router

• A router consists
– A set of input interfaces at which packets arrive

– A set of output interfaces from which packets depart

• Router implements two main functions
– Forward packet to corresponding output interface

– Manage congestion

.

. . .
. .

4

Generic Router Architecture

• Input and output interfaces
are connected through a
backplane

• A backplane can be
implemented by
– Shared memory

• Low capacity routers (e.g., PC-
based routers)

– Shared bus

• Medium capacity routers

– Point-to-point (switched) bus

• High capacity routers

input interface output interface

Inter-
connection
Medium
(Backplane)

5

Speedup

• C – input/output link capacity

• RI – maximum rate at which an
input interface can send data
into backplane

• RO – maximum rate at which an
output can read data from
backplane

• B – maximum aggregate
backplane transfer rate

• Back-plane speedup: B/C

• Input speedup: RI/C

• Output speedup: RO/C

input interface output interface

Inter-
connection
Medium
(Backplane)

C C RI RO B

6

Function division

• Input interfaces:
– Must perform packet

forwarding – need to
know to which output
interface to send
packets

– May enqueue packets
and perform scheduling

• Output interfaces:
– May enqueue packets

and perform scheduling

input interface output interface

Inter-
connection
Medium
(Backplane)

C C RI RO B

7

Three Router Architectures

• Output queued

• Input queued

• Combined Input-Output queued

8

Output Queued (OQ) Routers

• Only output interfaces
store packets

• Advantages
– Easy to design

algorithms: only one
congestion point

• Disadvantages
– Requires an output

speedup of N, where N
is the number of
interfaces � not
feasible

input interface output interface

Backplane

C RO

9

Input Queueing (IQ) Routers

• Only input interfaces store packets
• Advantages

– Easy to build
• Store packets at inputs if

contention at outputs
– Relatively easy to design algorithms

• Only one congestion point, but
not output…

• need to implement backpressure

• Disadvantages
– Hard to achieve utilization � 1 (due

to output contention, head-of-line
blocking)

• However, theoretical and
simulation results show that for
realistic traffic an input/output
speedup of 2 is enough to achieve
utilizations close to 1

input interface output interface

Backplane

C RO

10

Combined Input-Output
Queueing (CIOQ) Routers

• Both input and output
interfaces store packets

• Advantages
– Easy to built

• Utilization 1 can be achieved
with limited input/output
speedup (<= 2)

• Disadvantages
– Harder to design algorithms

• Two congestion points
• Need to design flow control

– Note: results show that with a
input/output speedup of 2, a
CIOQ can emulate any work-
conserving OQ [G+98,SZ98]

input interface output interface

Backplane

C RO

11

Generic Architecture of a High
Speed Router Today

• Combined Input-Output Queued Architecture
– Input/output speedup <= 2

• Input interface
– Perform packet forwarding (and classification)

• Output interface
– Perform packet (classification and) scheduling

• Backplane
– Point-to-point (switched) bus; speedup N

– Schedule packet transfer from input to output

12

Backplane

• Point-to-point switch allows to simultaneously
transfer a packet between any two disjoint pairs of
input-output interfaces

• Goal: come-up with a schedule that
– Meet flow QoS requirements
– Maximize router throughput

• Challenges:
– Address head-of-line blocking at inputs
– Resolve input/output speedups contention
– Avoid packet dropping at output if possible

• Note: packets are fragmented in fix sized cells
(why?) at inputs and reassembled at outputs
– In Partridge et al, a cell is 64 B (what are the trade-offs?)

13

Head-of-line Blocking

• The cell at the head of an input queue
cannot be transferred, thus blocking the
following cells

Cannot be
transferred
because output
buffer full

Cannot be transferred because
is blocked by red cell

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

14

Solution to Avoid Head-of-line
Blocking

• Maintain at each input N virtual queues,
i.e., one per output

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

15

Cell transfer

• Schedule:

– Ideally: find the maximum number of input-output pairs such that:

• Resolve input/output contentions

• Avoid packet drops at outputs

• Packets meet their time constraints (e.g., deadlines), if any

• Example

– Assign cell preferences at inputs, e.g., their position in the input queue

– Assign cell preferences at outputs, e.g., based on packet deadlines, or
the order in which cells would depart in a OQ router

– Match inputs and outputs based on their preferences

• Problem:

– Achieving a high quality matching complex, i.e., hard to do in constant
time

16

Routing vs. Forwarding

• Routing: control plane

– Computing paths the packets will follow

– Routers talking amongst themselves

– Individual router creating a forwarding table

• Forwarding: data plane

– Directing a data packet to an outgoing link

– Individual router using a forwarding table

How the control and data planes
work together (logical view)

FIB
IF 1

IF 2

RIB

Protocol daemon
Control
Plane

Data
Plane

12.0.0.0/8 ���� IF 2

12.0.0.0/8 ���� IF 2

12.0.0.0/8
Update

12.0.0.0/8
Data packet

18

Physical layout of a
high-end router

Switching
Fabric

Route
Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane

control
plane

Routing vs. Forwarding

• Control plane’s jobs include
– Route calculation

– Maintenance of routing table

– Execution of routing protocols

• On commercial routers,
handled by special-purpose
processor called “route
processor”

• IP forwarding is per-packet
processing
– On high-end commercial

routers, IP forwarding is
distributed

– Most work is done by interface
cards

19

Switching
Fabric

Route
Processor

data plane

control
plane

Router Components

• On a PC router:
– Interconnection network is the PCI

bus

– Interface cards are the NICs (e.g.,
Ethernet cards)

– All forwarding and routing is done
on a commodity CPU

• On commercial routers:
– Interconnection network and

interface cards are sophisticated,
special-purpose hardware

– Packet forwarding oftend
implemented in a custom ASIC

– Only routing (control plane) is done
on the commodity CPU (route
processor)

Slotted Chassis

• Large routers are built as a slotted chassis
– Interface cards are inserted in the slots

– Route processor is also inserted as a slot

• This simplifies repairs and upgrades of components
– E.g., “hot-swapping” of components

Evolution of router architectures

• Early routers were just general-purpose computers

• Today, high-performance routers resemble mini data
centers
– Exploit parallelism

– Specialized hardware

• Until 1980s (1st generation): standard computer

• Early 1990s (2nd generation): delegate packet
processing to interfaces

• Late 1990s (3rd generation): distributed architecture

• Today: distributed across multiple racks

22

First generation routers

• This architecture is still used in
low-end routers

• Arriving packets are copied to
main memory via direct memory
access (DMA)

• Interconnection network is a
backplane (shared bus)

• All IP forwarding functions are
performed by a commodity CPU

• Routing cache at processor can
accelerate the routing table
lookup

• Drawbacks:

– Forwarding performance is
limited by the CPU

– Capacity of shared bus limits the
number of interface cards that
can be connected

23

Off-chip buffer
memory

Shared
bus

Typically <0.5Gb/s
aggregate capacity

CPU Buffer
Memory

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC

Second generation routers

• Bypasses memory bus
with direct transfer over
bus between line cards

• Moves forwarding
decisions local to card
to reduce CPU
utilization

• Trap to CPU for “slow”
operations

24
Typically <5Gb/s aggregate capacity

CPU Buffer
Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Speeding up the common case
with a “Fast path”

• IP packet forwarding is complex
– But, vast majority of packets can be forwarded with simple

algorithm

– Main idea: put common-case forwarding in hardware, trap to
software on exceptions

– Example: BBN router had 85 instructions for fast-path code, which
fits entirely in L1 cache

• Non-common cases handled by slow path:
– Route cache misses

– Errors (e.g., ICMP time exceeded)

– IP options

– Fragmented packets

– Multicast packets

25

Improving upon second-
generation routers

• Control plane must remember lots of
information (BGP attributes, etc.)

– But data plane only needs to know FIB

– Smaller, fixed-length attributes

– Idea: store FIB in hardware

• Going over the bus adds delay

– Idea: Cache FIB in line cards

– Send directly over bus to outbound line
card

26

Improving upon second-
generation routers

• Shared bus is a big bottleneck

– E.g., modern PCI bus (PCIx16) is only
32Gbit/sec (in theory)

– Almost-modern Cisco (XR 12416) is 320
Gbit/sec

– Ow! How do we get there?

– Idea: put a “network” inside the router
• Switched backplane for larger cross-section

bandwidths

27

Third generation routers

• Replace bus with
interconnection network
(e.g., a crossbar switch)

• Distributed architecture:
– Line cards operate

independently of one another

– No centralized processing for IP
forwarding

• These routers can be scaled
to many hundreds of
interface cards and capacity
of > 1 Tbit/sec

28

Line
Card

MAC

Local
Buffer

Memory

CPU
Card

Line
Card

MAC

Local
Buffer

Memory

Switch Fabric: From Input to
Output

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Queue
Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Data Hdr

Data Hdr

Data Hdr

1

2

N

1

2

N

Crossbars

• N input ports, N output ports
– One per line card, usually

• Every line card has its own forwarding
table/classifier/etc --- removes CPU bottleneck

• Scheduler
– Decides which input/output port pairs to connect in a given

time slot

– Often forward fixed-sized “cells” to avoid variable-length
time slots

– Crossbar constraint

• If input i is connected to output j, no other input connected to
j, no other output connected to i

• Scheduling is a bipartite matching

 30

31

Data Plane Details: Checksum

• Takes too much time to verify checksum
– Increases forwarding time by 21%

• Take an optimistic approach: just
incrementally update it
– Safe operation: if checksum was correct it remains

correct

– If checksum bad, it will be anyway caught by end-
host

• Note: IPv6 does not include a header
checksum anyway!

Multi-chassis routers

• Multi-chassis router
– A single router that is a distributed collection of racks

– Scales to 322 Tbps, can replace an entire PoP

32

33

Why multi-chassis routers?

• ~ 40 routers per PoP (easily) in today’s Intra-PoP
architectures

• Connections between these routers require the
same expensive line cards as inter-PoP connections
– Support forwarding tables, QoS, monitoring,

configuration, MPLS

– Line cards are dominant cost of router, and racks often
limited to sixteen 40 Gbps line cards

• Each connection appears as an adjacency in the
routing protocol
– Increases IGP/iBGP control-plane overhead

– Increases complexity of scaling techniques such as route
reflectors and summarization

34

Multi-chassis routers
to the rescue

• Multi-chassis design: each line-card chassis has some fabric
interface cards
– Do not use line-card slots: instead uses a separate, smaller

connection

– Do not need complex packet processing logic � much cheaper than
line cards

• Multi-chassis router acts as one router to the outside world
– Simplifies administration

– Reduces number of iBGP adjacencies and IGP nodes/links without
resorting to complex scaling techniques

• However, now the multi-chassis router becomes a
distributed system � Interesting research topics
– Needs rethinking of router software (distributed and parallel)

– Needs high resilience (no external backup routers)

Matching Algorithms

What’s so hard about IP packet
forwarding?

• Back-of-the-envelope numbers
– Line cards can be 40 Gbps today (OC-768)

• Getting faster every year!

– To handle minimum-sized packets (~40b)
• 125 Mpps, or 8ns per packet

• Can use parallelism, but need to be careful about
reordering

• For each packet, you must
– Do a routing lookup (where to send it)

– Schedule the crossbar

– Maybe buffer, maybe QoS, maybe ACLs,…

36

Routing lookups

• Routing tables:
200,000 to 1M entries
– Router must be able to

handle routing table loads
5-10 years hence

• How can we store routing
state?

– What kind of memory to
use?

• How can we quickly lookup
with increasingly large
routing tables?

37

Memory technologies

• Vendors moved from DRAM (1980s) to SRAM (1990s)
to TCAM (2000s)

• Vendors are now moving back to SRAM and parallel
banks of DRAM due to power/heat

38

Technology Single chip
density

$/MByte Access
speed

Watts/
chip

Dynamic RAM (DRAM)
cheap, slow

64 MB $0.50-
$0.75

40-80ns 0.5-2W

Static RAM (SRAM)
expensive, fast, a bit higher
heat/power

4 MB $5-$8 4-8ns 1-3W

Ternary Content Addressable
Memory (TCAM)
very expensive, very high
heat/power, very fast (does
parallel lookups in hardware)

1 MB $200-$250 4-8ns 15-30W

Fixed-Length
Matching Algorithms

Ethernet Switch

• Lookup frame DA in forwarding table.
– If known, forward to correct port.

– If unknown, broadcast to all ports.

• Learn SA of incoming frame.

• Forward frame to outgoing interface.

• Transmit frame onto link.

• How to do this quickly?
– Need to determine next hop quickly

– Would like to do so without reducing line rates

40

Why Ethernet needs wire-speed
forwarding

• Scenario:
– Bridge has a 500 packet

buffer

– Link rate: 1 packet/ms

– Lookup rate: 0.5 packet/ms

– A sends 1000 packets to B

– A sends 10 packets to C

• What happens to C’s
packets?
– What would happen if this

Bridge was a Router?

• Need wirespeed
forwarding

41

Bridge

C

A B

C↑

A↓

Inside a switch

• Packet received from upper Ethernet

• Ethernet chip extracts source address S, stored in shared
memory, in receive queue

– Ethernet chips set in “promiscuous mode”

• Extracts destination address D, given to lookup engine

 42

Ethernet 2

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memory Processor
Lookup
engine

Inside a switch

• Lookup engine looks up D in database stored in memory

– If destination is on upper Ethernet: set packet buffer pointer to
free queue

– If destination is on lower Ethernet: set packet buffer pointer to
transmit queue of the lower Ethernet

• How to do the lookup quickly?

43

Ethernet 2

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memory Processor
Lookup
engine

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

Problem overview

• Goal: given address, look up outbound interface
– Do this quickly (few instructions/low circuit

complexity)

• Linear search too low
44

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

90:03:BA:26:01:B0 Eth 2

Idea #1: binary search

• Put all destinations in a list, sort them,
binary search

• Problem: logarithmic time

45

F0:4D:A2:3A:31:9C � Eth 1
00:21:9B:77:F2:65 � Eth 2
8B:01:54:A2:78:9C � Eth 1
00:0C:F1:56:98:AD � Eth 1
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
90:03:BA:26:01:B0 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
00:10:7F:00:0D:B7 � Eth 2

00:0C:F1:56:98:AD � Eth 1
00:10:7F:00:0D:B7 � Eth 2
00:21:9B:77:F2:65 � Eth 2
00:B0:D0:86:BB:F7 � Eth 2
00:A0:C9:14:C8:29 � Eth 2
00:0C:29:A8:D0:FA � Eth 1
8B:01:54:A2:78:9C � Eth 1
90:03:BA:26:01:B0 � Eth 2
F0:4D:A2:3A:31:9C � Eth 1

90:03:BA:26:01:B0 Eth 2

Improvement:
Parallel Binary search

• Packets still have O(log n) delay, but
can process O(log n) packets in parallel
� O(1)

46

00:A0:C9:14:C8:29

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:F1:56:98:AD
00:10:7F:00:0D:B7
00:21:9B:77:F2:65
00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29
00:0C:29:A8:D0:FA
8B:01:54:A2:78:9C
90:03:BA:26:01:B0
F0:4D:A2:3A:31:9C

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

Improvement:
Parallel Binary search

• Packets still have O(log n) delay, but
can process O(log n) packets in parallel
� O(1)

47

00:A0:C9:14:C8:29

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:F1:56:98:AD
00:10:7F:00:0D:B7
00:21:9B:77:F2:65
00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29
00:0C:29:A8:D0:FA
8B:01:54:A2:78:9C
90:03:BA:26:01:B0
F0:4D:A2:3A:31:9C

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

01

02

04

Idea #2: hashing

• Hash key=destination, value=interface pairs

• Lookup in O(1) with hash

• Problem: chaining (not really O(1))

00

hashes

03

01

02

04
05 ...

08

function
F0:4D:A2:3A:31:9C

keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29

90:03:BA:26:01:B0
00:0C:29:A8:D0:FA
00:10:7F:00:0D:B7

bins

F0:4D:A2:3A:31:9C

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7 00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA 00:10:7F:00:0D:B7
90:03:BA:26:01:B0

Improvement: Perfect hashing

• Perfect hashing: find a hash function that maps perfectly with
no collisions

• Gigaswitch approach

– Use a parameterized hash function

– Precompute hash function to bound worst case number of collisions
49

01

02

04

00

hashes

03

01

02

04
05 ...

08

parameter

F0:4D:A2:3A:31:9C
keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD
00:B0:D0:86:BB:F7
00:A0:C9:14:C8:29

90:03:BA:26:01:B0
00:0C:29:A8:D0:FA
00:10:7F:00:0D:B7

bins

F0:4D:A2:3A:31:9C

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7 00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA 00:10:7F:00:0D:B7
90:03:BA:26:01:B0

Variable-Length
Matching Algorithms

Longest Prefix Match

• Not just one entry that matches a
destination
– 128.174.252.0/24 and 128.174.0.0/16

– Which one to use for 128.174.252.14?

– By convention, Internet routers choose the longest
(most-specific) match

• Need variable prefix match algorithms
– Several methods

51

Method 1: Trie

Sample Database

• P1=10*

• P2=111*

• P3=11001*

• P4=1*

• P5=0*

• P6=1000*

• P7=100000*

• P8=1000000*

52

• Tree of (left ptr, right ptr) data structures

• May be stored in SRAM/DRAM

• Lookup performed by traversing sequence of pointers

• Lookup time O(log N) where N is # prefixes

Trie

Improvement 1: Skip Counts and
Path Compression

• Removing one-way branches ensures # of trie nodes is at most
twice # of prefixes

• Using a skip count requires exact match at end and
backtracking on failure � path compression is simpler

• Main idea behind Patricia Tries 53

Improvement 2:
Multi-way tree

• Doing multiple comparisons per cycle accelerates lookup
– Can do this for free to the width of CPU word (modern CPUs

process multiple bits per cycle)

• But increases wasted space (more unused pointers)
54

16-ary Search Trie

0000, ptr 1111, ptr

0000, 0 1111, ptr

000011110000

0000, 0 1111, ptr

111111111111

Improvement 2: Multi-way tree

55

Degree of
Tree

Mem
References

Nodes
(x106)

Total Memory
(Mbytes)

Fraction
Wasted (%)

2 48 1.09 4.3 49
4 24 0.53 4.3 73
8 16 0.35 5.6 86
16 12 0.25 8.3 93
64 8 0.17 21 98
256 6 0.12 64 99.5

Ew DL 1– 1 1 N

DL
-------–

 D–

 D i 1 Di 1––()N 1 D1 i––()N–()

i 1=

L 1–

∑+=

En 1 DL 1 N

DL
-------–

 D Di D i 1– 1 Di 1––()N–

i 1=

L 1–

∑+ +=

Where:

D Degree of tree=

L Number of layers/references=

N Number of entries in table =

En Expected number of nodes=

Ew Expected amount of wasted memory=

Table produced from 215 randomly generated 48-bit addresses

Method 2: Lookups in Hardware

56

• Observation: most prefixes are /24 or shorter

• So, just store a big 2^24 table with next hop for each prefix

• Nonexistant prefixes � just leave that entry empty

Prefix length

N
um

be
r

Method 2: Lookups in Hardware

57

14
2.

19
.6

.1
4

Prefixes up to 24-bits
14

2.
19

.6

14

1 Next Hop

24

Next Hop

142.19.6

224 = 16M entries

Method 2: Lookups in Hardware

58

12
8.

3.
72

.4
4

Prefixes up to 24-bits
12

8.
3.

72

44

1 Next Hop

128.3.72

24 0 Pointer

8

Prefixes above
24-bits

Next Hop

Next Hop

Next Hop
of

fs
et

ba

se

Method 2: Lookups in Hardware

• Advantages
– Very fast lookups

• 20 Mpps with 50ns DRAM

– Easy to implement in hardware

• Disadvantages
– Large memory required

– Performance depends on prefix length distribution

59

Method 3: Ternary CAMs

• “Content Addressable”
– Hardware searches entire memory to find supplied value

– Similar interface to hash table

• “Ternary”: memory can be in three states
– True, false, don’t care

– Hardware to treat don’t care as wildcard match

Selector

Next Hop

Associative Memory

Value Mask Next hop

10.0.0.0 255.0.0.0 IF 1

10.1.0.0 255.255.0.0 IF 3

10.1.1.0 255.255.255.0 IF 4

10.1.3.0 255.255.255.0 IF 2

10.1.3.1 255.255.255.255 IF 2

Lookup
Value

Classification Algorithms

Providing Value-Added Services

• Differentiated services

– Regard traffic from AS#33 as `platinumgrade’

• Access Control Lists

– Deny udp host 194.72.72.33 194.72.6.64 0.0.0.15 eq snmp

• Committed Access Rate

– Rate limit WWW traffic from subinterface#739 to 10Mbps

• Policybased Routing

– Route all voice traffic through the ATM network

• Peering Arrangements

– Restrict the total amount of traffic of precedence 7 from

– MAC address N to 20 Mbps between 10 am and 5pm

• Accounting and Billing

– Generate hourly reports of traffic from MAC address M

• � Need to address the Flow Classification problem 62

Flow Classification

63

Flow Index

---- ----

Predicate Action
Policy Database

Flow Classification

Forwarding Engine

Incoming
Packet

H
E
A
D
E
R

A Packet Classifier

64

Given a classifier, find the action associated with the highest priority
rule (here, the lowest numbered rule) matching an incoming packet.

 Field 1 Field 2 … Field k Action

Rule 1 152.163.190.69/21 152.163.80.11/32 … Udp A1

Rule 2 152.168.3.0/24 152.163.200.157/16 … Tcp A2

… … … … … …

Rule N 152.168.3.0/16 152.163.80.11/32 … Any An

Geometric Interpretation in 2D

65

R5 R4

R3

R2
R1

R7

P2

Field #1

F
ie

ld
 #

2

R6

Field #1 Field #2 Data

P1

e.g. (128.16.46.23, *)
e.g. (144.24/16, 64/24)

Approach #1: Linear search

• Build linked list of all classification rules
– Possibly sorted in order of decreasing priorities

• For each arriving packet, evaluate each rule
until match is found

• Pros: simple and storage efficient

• Cons: classification time grows linearly with
number of rules
– Variant: build FSM of rules (pattern matching)

66

Approach #2: Ternary CAMs

• Similar to TCAM use in prefix matching
– Need wider than 32-bit array, typically 128-256

bits

• Ranges expressed as don’t cares below a
particular bit
– Done for each field

• Pros: O(1) lookup time, simple

• Cons: heat, power, cost, etc.
– Power for a TCAM row increases proportionally to

its width
67

Approach #3: Hierarchical trie

• Recursively build d-dimensional radix trie
– Trie for first field, attach sub-tries to trie’s leaves for sub-

field, repeat

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(NdW)

– Lookup complexity: O(W^d)

68

F1

F2

Approach #4: Set-pruning tries

• “Push” rules down the hierarchical trie

• Eliminates need for recursive lookups

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(dWN^d)

– Lookup complexity: O(dW)

69

F1

F2

Approach #5: Crossproducting

• Compute separate 1-dimensional range
lookups for each dimension

• For N-bit rules, d dimensions, W-bit wide dimensions:
– Storage complexity: O(N^d)

– Lookup complexity: O(dW)

70

Other proposed schemes

71

Packet Scheduling and Fair Queuing

Packet Scheduling:
Problem Overview

73

• When to send packets?

• What order to send them in?

Approach #1:
First In First Out (FIFO)

74

• Packets are sent out in the same order
they are received

• Benefits: simple to design, analyze

• Downsides: not compatible with QoS

• High priority packets can get stuck behind low
priority packets

Approach #2:
Priority Queuing

75

• Operator can configure policies to give certain kinds of
packets higher priority
• Associate packets with priority queues

• Service higher-priority queue when packets are available to be
sent

• Downside: can lead to starvation of lower-priority queues

High

Normal

Low

Classifier

Approach #3:
Weighted Round Robin

76

• Round robin through queues, but visit higher-priority queues more
often

• Benefit: Prevents starvation

• Downsides: a host sending long packets can steal bandwidth

• Naïve implementation wastes bandwidth due to unused slots

60% (� 6 slots)

30% (� 3 slots)

10% (� 1 slots)

1

1 4

1

2 3 6 7

2 3 4 5

2 3

4 5

1 2 3

6

4

5 1 2

3 1

77

Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants

78

Fairness Goals

• Allocate resources fairly

• Isolate ill-behaved users

– Router does not send explicit feedback to
source

– Still needs e2e congestion control

• Still achieve statistical muxing

– One flow can fill entire pipe if no
contenders

– Work conserving � scheduler never idles
link if it has a packet

79

What is Fairness?

• At what granularity?
– Flows, connections, domains?

• What if users have different RTTs/links/etc.
– Should it share a link fairly or be TCP fair?

• Maximize fairness index?
– Fairness = (Σxi)

2/n(Σxi
2) 0<fairness<1

• Basically a tough question to answer –
typically design mechanisms instead of policy
– User = arbitrary granularity

What would be a fair allocation
here?

80

81

Max-min Fairness

• Allocate user with “small” demand what
it wants, evenly divide unused
resources to “big” users

• Formally:
• Resources allocated in terms of increasing

demand

• No source gets resource share larger than its
demand

• Sources with unsatisfied demands get equal
share of resource

82

Max-min Fairness Example

• Assume sources 1..n, with resource
demands X1..Xn in ascending order

• Assume channel capacity C.

– Give C/n to X1; if this is more than X1
wants, divide excess (C/n - X1) to other
sources: each gets C/n + (C/n - X1)/(n-1)

– If this is larger than what X2 wants, repeat
process

83

Implementing max-min Fairness

• Generalized processor sharing

– Fluid fairness

– Bitwise round robin among all queues

• Why not simple round robin?
– Variable packet length � can get more

service by sending bigger packets

– Unfair instantaneous service rate
• What if arrive just before/after packet departs?

84

Bit-by-bit RR

• Single flow: clock ticks when a bit is
transmitted. For packet i:
– Pi = length, Ai = arrival time, Si = begin

transmit time, Fi = finish transmit time

– Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit
from all active flows is transmitted �
round number
– Can calculate Fi for each packet if number

of flows is know at all times
• This can be complicated

Approach #4:
Bit-by-bit Round Robin

85

• Round robin through “backlogged” queues (queues with pkts to
send)

• However, only send one bit from each queue at a time

• Benefit: Achieves max-min fairness, even in presence of variable
sized pkts

• Downsides: you can’t really mix up bits like this on real networks!

20 bits

5 bits

10 bits

Output queue

86

The next-best thing:
Fair Queuing

• Bit-by-bit round robin is fair, but you
can’t really do that in practice

• Idea: simulate bit-by-bit RR, compute
the finish times of each packet

– Then, send packets in order of finish times

– This is known as Fair Queuing

87

What is Weighted Fair Queuing?

• Each flow i given a weight (importance) wi

• WFQ guarantees a minimum service rate to
flow i
– ri = R * wi / (w1 + w2 + ... + wn)

– Implies isolation among flows (one cannot mess
up another)

w1

w2

wn

R

Packet queues

88

What is the Intuition? Fluid Flow

w1

water pipes
w2

w3

t1

t2

w2 w3

water buckets

w1

89

Fluid Flow System

• If flows could be served one bit at a time:

• WFQ can be implemented using bit-by-bit
weighted round robin

–During each round from each flow that has
data to send, send a number of bits equal to
the flow’s weight

90

Fluid Flow System: Example 1

1 2 3
1 2

4
3 4

5
5 6

Flow 2
(arrival traffic) time

Flow 1
(arrival traffic) time

1 2 3 4 5

1 2 3 4 5 6

Packet
Size (bits)

Packet inter-arrival
time (ms)

Arrival
Rate

(Kbps)

Flow 1 1000 10 100

Flow 2 500 10 50

100 Kbps Flow 1 (w1 = 1)

Flow 2 (w2 = 1)

Service
in fluid flow

system time (ms) 0 10 20 30 40 50 60 70 80

91

Fluid Flow System: Example 2

0 15 2 10 4 6 8

5 1 1 1 1 1

• Red flow has packets
backlogged between time 0
and 10

– Backlogged flow � flow’s
queue not empty

• Other flows have packets
continuously backlogged

• All packets have the same size

flows

link

weights

92

Implementation in Packet
System

• Packet (Real) system: packet
transmission cannot be preempted.
Why?

• Solution: serve packets in the order in
which they would have finished being
transmitted in the fluid flow system

93

Packet System: Example 1

0 2 10 4 6 8

0 2 10 4 6 8

• Select the first packet that finishes in the fluid flow system

Service
in fluid flow

system

Packet
system

94

Packet System: Example 2

1 2 1 3 2 3 4 4 5 5 6 Packet
system time

1 2 3
1 2

4
3 4

5
5 6

Service
in fluid flow

system time (ms)

• Select the first packet that finishes in the fluid flow system

95

Implementation Challenge

• Need to compute the finish time of a
packet in the fluid flow system…

• … but the finish time may change as
new packets arrive!

• Need to update the finish times of all
packets that are in service in the fluid
flow system when a new packet arrives

–But this is very expensive; a high speed
router may need to handle hundred of
thousands of flows!

96

Example

• Four flows, each with weight 1
Flow 1

time

time

ε

time

time

Flow 2

Flow 3

Flow 4

0 1 2 3

Finish times computed at time 0

time

time

Finish times re-computed at time ε

0 1 2 3 4

Approach #5:
Self-Clocked Fair Queuing

97

A 9 8 7 6 5 4 3 2 1

2 1

4 3 2 1

Output queue

Virtual time

Real time (or, # bits processed)

1

98

Solution: Virtual Time

• Key Observation: while the finish times of
packets may change when a new packet
arrives, the order in which packets finish
doesn’t!

–Only the order is important for scheduling

• Solution: instead of the packet finish time
maintain the round # when a packet
finishes (virtual finishing time)

–Virtual finishing time doesn’t change when a
packet arrives

99

Example

• Suppose each packet is 1000 bits, so takes 1000
rounds to finish

• So, packets of F1, F2, F3 finishes at virtual time
1000

• When packet F4 arrives at virtual time 1 (after
one round), the virtual finish time of packet F4 is
1001

• But the virtual finish time of packet F1,2,3
remains 1000

• Finishing order is preserved

Flow 1

time

time

ε

time

time

Flow 2

Flow 3

Flow 4

100

System Virtual Time (Round #): V(t)

• V(t) increases inversely proportionally to the sum of the
weights of the backlogged flows
– During one tick of V(t), all backlogged flows can transmit one bit

• Since round # increases slower when there are more flows
to visit each round.

1 2 3
1 2

4
3 4

5
5 6

Flow 2 (w2 = 1)

Flow 1 (w1 = 1)

time

time

C

C/2 V(t)

Is Fair Queuing perfectly fair?

• No. Example: Once we begin transmission of
a packet, it’s possible a new packet arrives
that would have a smaller finishing time than
the current packet
– FQ is non-preemptive, so keep transmitting

current packet

• However, if a packet is sitting in an output
queue with its finish time calculated, and a
new packet arrives with a sooner finish time,
the new packet will be sent first

101

102

Fair Queueing Implementation

• Define
– - virtual finishing time of packet k of flow i

– - arrival time of packet k of flow i

– - length of packet k of flow i

– wi – weight of flow i

• The finishing time of packet k+1 of flow i is

• Smallest finishing time first scheduling policy

k
iL

k
ia

k
iF

111)),(max(+++ += k
i

k
i

k
i

k
i LFaVF / wi

103

Properties of WFQ

• Guarantee that any packet is
transmitted within
packet_length/link_capacity of its
transmission time in the fluid flow
system

–Can be used to provide guaranteed services

• Achieve fair allocation

–Can be used to protect well-behaved flows
against malicious flows

104

Fair Queuing Tradeoffs

• FQ can control congestion by monitoring flows
– Non-adaptive flows can still be a problem – why?

• Complex state
– Must keep queue per flow

• Hard in routers with many flows (e.g., backbone routers)

• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
– Classification into flows may be hard

– Must keep queues sorted by finish times

– Finish times change whenever the flow count changes

105

Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants

106

Core-Stateless Fair Queuing

• Key problem with FQ is core routers
– Must maintain state for 1000’s of flows

– Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
– Edge routers should do complex tasks since they

have fewer flows

– Core routers can do simple tasks
• No per-flow state/processing � this means that core

routers can only decide on dropping packets not on
order of processing

• Can only provide max-min bandwidth fairness not delay
allocation

107

Core-Stateless Fair Queuing

• Edge routers keep state about flows
and do computation when packet
arrives

• DPS (Dynamic Packet State)

– Edge routers label packets with the result
of state lookup and computation

• Core routers use DPS and local
measurements to control processing of
packets

108

Edge Router Behavior

• Monitor each flow i to measure its
arrival rate (ri)

– EWMA of rate

– Non-constant EWMA constant
• e-T/K where T = current interarrival, K =

constant

• Helps adapt to different packet sizes and arrival
patterns

• Rate is attached to each packet

109

Core Router Behavior

• Keep track of fair share rate α

– Increasing α does not increase load (F) by
N * α

– F(α) = Σi min(ri, α) � what does this look
like?

– Periodically update α

– Keep track of current arrival rate
• Only update α if entire period was congested or

uncongested

• Drop probability for packet = max(1-
α/r, 0)

110

F vs. Alpha

New alpha

C [linked capacity]

r1 r2 r3 old alpha
alpha

F

111

Estimating Fair Share

• Need F(α) = capacity = C
– Can’t keep map of F(α) values � would require

per flow state

– Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = Fc

• F(α) = Fc/ α

• F(αnew) = C � αnew = αold * C/Fc

• What if a mistake was made?
– Forced into dropping packets due to buffer

capacity

– When queue overflows α is decreased slightly

112

Other Issues

• Punishing fire-hoses – why?

– Easy to keep track of in a FQ scheme

• What are the real edges in such a
scheme?

– Must trust edges to mark traffic accurately

– Could do some statistical sampling to see if
edge was marking accurately

113

Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants

Stochastic Fair Queuing

• Compute a hash on each packet

• Instead of per-flow queue have a queue
per hash bin

• An aggressive flow steals traffic from
other flows in the same hash

• Queues serviced in round-robin fashion
– Has problems with packet size unfairness

• Memory allocation across all queues
– When no free buffers, drop packet from

longest queue
114

115

Deficit Round Robin

• Each queue is allowed to send Q bytes per
round

• If Q bytes are not sent (because packet is too
large) deficit counter of queue keeps track of
unused portion

• If queue is empty, deficit counter is reset to 0

• Uses hash bins like Stochastic FQ

• Similar behavior as FQ but computationally
simpler
– Bandwidth guarantees, but no latency guarantees

Deficit Round Robin
Example

Matthew Caesar (caesar@uiuc.edu) 116

1500

800

1200

Deficit=0

Deficit=0

Deficit=0

1. Increment deficit counter by
Quantum Size

2. Send packet if size is greater than
deficit

3. When you send a packet,
subtract its size from the deficit

Quantum Size = 1000

1000

1000

1000
2000

500

2000

200 Outbound queue

800

117

Self-clocked Fair Queuing

• Virtual time to make computation of
finish time easier

• Problem with basic FQ
– Need be able to know which flows are

really backlogged
• They may not have packet queued because

they were serviced earlier in mapping of bit-by-
bit to packet

• This is necessary to know how bits sent map
onto rounds

• Mapping of real time to round is piecewise
linear � however slope can change often

118

Self-clocked FQ

• Use the finish time of the packet being
serviced as the virtual time

– The difference in this virtual time and the
real round number can be unbounded

• Amount of service to backlogged flows
is bounded by factor of 2

119

Start-time Fair Queuing

• Packets are scheduled in order of their
start not finish times

• Self-clocked � virtual time = start time
of packet in service

• Main advantage � can handle variable
rate service better than other schemes

