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This lecture 

 

• Network devices 

– Their internals and how they work 

 

• Network connections 

– How to plug devices together 
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IP Router 

• A router consists 
– A set of input interfaces at which packets arrive 

– A set of output interfaces from which packets depart  

• Router implements two main functions 
– Forward packet to corresponding output interface 

– Manage congestion 

. 

. . . 
. . 
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Generic Router Architecture 

• Input and output interfaces 
are connected through a 
backplane 

• A backplane can be 
implemented by 
– Shared memory  

• Low capacity routers (e.g., PC-
based routers) 

– Shared bus 

• Medium capacity routers 

– Point-to-point (switched) bus  

•  High capacity routers 

input interface output interface 

Inter- 
connection 
Medium 
(Backplane) 
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Speedup 

• C – input/output link capacity 

• RI – maximum rate at which an 
input interface can send data 
into backplane 

• RO – maximum rate at which an 
output can read data from 
backplane 

• B – maximum aggregate 
backplane transfer rate 

• Back-plane speedup: B/C 

• Input speedup: RI/C 

• Output speedup: RO/C 

 

input interface output interface 

Inter- 
connection 
Medium 
(Backplane) 

C C RI RO B 
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Function division 

• Input interfaces: 
– Must perform packet 

forwarding – need to 
know to which output 
interface to send 
packets 

– May enqueue packets 
and perform scheduling 

• Output interfaces: 
– May enqueue packets 

and perform scheduling 

input interface output interface 

Inter- 
connection 
Medium 
(Backplane) 

C C RI RO B 
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Three Router Architectures 

• Output queued 

• Input queued  

• Combined Input-Output queued 
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Output Queued (OQ) Routers 

• Only output interfaces 
store packets 

• Advantages 
– Easy to design 

algorithms: only one 
congestion point 

• Disadvantages 
– Requires an output 

speedup of N, where N 
is the number of 
interfaces � not 
feasible 

input interface output interface 

Backplane 

C RO 
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Input Queueing (IQ) Routers 

• Only input interfaces store packets 
• Advantages 

– Easy to build 
• Store packets at inputs if 

contention at outputs  
– Relatively easy to design algorithms 

• Only one congestion point, but 
not output… 

• need to implement backpressure 

• Disadvantages 
– Hard to achieve utilization � 1 (due 

to output contention, head-of-line 
blocking)  

• However, theoretical and 
simulation results show that for 
realistic traffic an input/output 
speedup of 2 is enough to achieve 
utilizations close to 1 

input interface output interface 

Backplane 

C RO 
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Combined Input-Output 
Queueing (CIOQ) Routers 

• Both input and output 
interfaces store packets 

• Advantages 
– Easy to built  

• Utilization 1 can be achieved 
with limited input/output 
speedup (<= 2) 

• Disadvantages 
– Harder to design algorithms 

• Two congestion points 
• Need to design flow control 

– Note: results show that with a 
input/output speedup of 2, a 
CIOQ can emulate any work-
conserving OQ [G+98,SZ98]  

input interface output interface 

Backplane 

C RO 
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Generic Architecture of a High 
Speed Router Today 

• Combined Input-Output Queued Architecture 
– Input/output speedup <= 2 

• Input interface 
– Perform packet forwarding (and classification) 

• Output interface 
– Perform packet (classification and) scheduling 

• Backplane 
– Point-to-point (switched) bus; speedup N 

– Schedule packet transfer from input to output  
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Backplane  

• Point-to-point switch allows to simultaneously 
transfer a packet between any two disjoint pairs of 
input-output interfaces 

• Goal: come-up with a schedule that 
– Meet flow QoS requirements 
– Maximize router throughput 

• Challenges: 
– Address head-of-line blocking at inputs 
– Resolve input/output speedups contention 
– Avoid packet dropping at output if possible 

• Note: packets are fragmented in fix sized cells 
(why?) at inputs and reassembled  at outputs  
– In Partridge et al, a cell is 64 B (what are the trade-offs?) 
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Head-of-line Blocking 

• The cell at the head of an input queue 
cannot be transferred, thus blocking the 
following cells   

Cannot be 
transferred  
because output  
buffer full 

Cannot be transferred because  
is blocked by red cell  

Output 1 

Output 2 

Output 3 

Input 1 

Input 2 

Input 3 
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Solution to Avoid Head-of-line 
Blocking 

• Maintain at each input N virtual queues, 
i.e., one per output  

Output 1 

Output 2 

Output 3 

Input 1 

Input 2 

Input 3 
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Cell transfer  

• Schedule: 

– Ideally: find the maximum number of input-output pairs such that: 

• Resolve input/output contentions 

• Avoid packet drops at outputs 

• Packets meet their time constraints (e.g., deadlines), if any 

• Example 

– Assign cell preferences at inputs, e.g., their position in the input queue  

– Assign cell preferences at outputs, e.g., based on packet deadlines, or 
the order in which cells would depart in a OQ router 

– Match inputs and outputs based on their preferences 

• Problem: 

– Achieving a high quality matching complex, i.e., hard to do in constant 
time 
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Routing vs. Forwarding 

• Routing: control plane 

– Computing paths the packets will follow 

– Routers talking amongst themselves 

– Individual router creating a forwarding table 

 

• Forwarding: data plane 

– Directing a data packet to an outgoing link 

– Individual router using a forwarding table 



How the control and data planes 
work together (logical view) 

FIB 
IF 1 

IF 2 

RIB 

Protocol daemon 
Control 
Plane 

Data 
Plane 

12.0.0.0/8 ���� IF 2 

12.0.0.0/8 ���� IF 2 

12.0.0.0/8 
Update 

12.0.0.0/8 
Data packet 
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Physical layout of a  
high-end router 

Switching 
Fabric 

Route  
Processor 

Line card 

Line card 

Line card 

Line card 

Line card 

Line card 

data plane 

control 
plane 



Routing vs. Forwarding 

• Control plane’s jobs include 
– Route calculation 

– Maintenance of routing table 

– Execution of routing protocols 

• On commercial routers, 
handled by special-purpose 
processor called “route 
processor” 

• IP forwarding is per-packet 
processing 
– On high-end commercial 

routers, IP forwarding is 
distributed 

– Most work is done by interface 
cards 
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Switching 
Fabric 

Route 
Processor 

data plane 

control 
plane 



Router Components 

• On a PC router: 
– Interconnection network is the PCI 

bus 

– Interface cards are the NICs (e.g., 
Ethernet cards) 

– All forwarding and routing is done 
on a commodity CPU 

• On commercial routers: 
– Interconnection network and 

interface cards are sophisticated, 
special-purpose hardware  

– Packet forwarding oftend 
implemented in a custom ASIC 

– Only routing (control plane) is done 
on the commodity CPU (route 
processor) 



Slotted Chassis 

• Large routers are built as a slotted chassis 
– Interface cards are inserted in the slots 

– Route processor is also inserted as a slot 

• This simplifies repairs and upgrades of components 
– E.g., “hot-swapping” of components 



Evolution of router architectures 

• Early routers were just general-purpose computers 

• Today, high-performance routers resemble mini data 
centers 
– Exploit parallelism 

– Specialized hardware 

 

• Until 1980s (1st generation):  standard computer 

• Early 1990s (2nd generation): delegate packet 
processing to interfaces 

• Late 1990s (3rd generation):  distributed architecture 

• Today: distributed across multiple racks 
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First generation routers 

• This architecture is still used in 
low-end routers 

• Arriving packets are copied to 
main memory via direct memory 
access (DMA) 

• Interconnection network is a 
backplane (shared bus) 

• All IP forwarding functions are 
performed by a commodity CPU 

• Routing cache at processor can 
accelerate the routing table 
lookup 

• Drawbacks: 

– Forwarding performance is 
limited by the CPU 

– Capacity of shared bus limits the 
number of interface cards that 
can be connected 
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Off-chip buffer 
memory 

Shared
bus 

Typically <0.5Gb/s  
aggregate capacity 

CPU Buffer 
Memory 

Line 
Interface 

DMA 

MAC 

Line 
Interface 

DMA 

MAC 

Line 
Interface 

DMA 

MAC 



Second generation routers 

• Bypasses memory bus 
with direct transfer over 
bus between line cards 

 

• Moves forwarding 
decisions local to card 
to reduce CPU 
utilization 

 

• Trap to CPU for “slow” 
operations 
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Typically <5Gb/s aggregate capacity 

CPU Buffer 
Memory 

Line 
Card 

DMA 

MAC 

Local 
Buffer 

Memory 

Line 
Card 

DMA 

MAC 

Local 
Buffer 

Memory 

Line 
Card 

DMA 

MAC 

Local 
Buffer 

Memory 



Speeding up the common case 
with a “Fast path” 

• IP packet forwarding is complex 
– But, vast majority of packets can be forwarded with simple 

algorithm 

– Main idea: put common-case forwarding in hardware, trap to 
software on exceptions 

– Example: BBN router had 85 instructions for fast-path code, which 
fits entirely in L1 cache 

• Non-common cases handled by slow path: 
– Route cache misses 

– Errors (e.g., ICMP time exceeded) 

– IP options 

– Fragmented packets 

– Multicast packets 
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Improving upon second-
generation routers 

• Control plane must remember lots of 
information (BGP attributes, etc.) 

– But data plane only needs to know FIB 

– Smaller, fixed-length attributes 

– Idea: store FIB in hardware 

 

• Going over the bus adds delay 

– Idea: Cache FIB in line cards 

– Send directly over bus to outbound line 
card 
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Improving upon second-
generation routers 

• Shared bus is a big bottleneck 

– E.g., modern PCI bus (PCIx16) is only 
32Gbit/sec (in theory) 

– Almost-modern Cisco (XR 12416) is 320 
Gbit/sec 

– Ow! How do we get there? 

– Idea: put a “network” inside the router 
• Switched backplane for larger cross-section 

bandwidths 
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Third generation routers 

• Replace bus with 
interconnection network 
(e.g., a crossbar switch) 

• Distributed architecture: 
– Line cards operate 

independently of one another 

– No centralized processing for IP 
forwarding 

• These routers can be scaled 
to many hundreds of 
interface cards and capacity 
of > 1 Tbit/sec 
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Line 
Card 

MAC 

Local 
Buffer 

Memory 

CPU 
Card 

Line 
Card 

MAC 

Local 
Buffer 

Memory 



Switch Fabric: From Input to 
Output 

Lookup 
Address 

Update 
Header 

Header Processing 

Address 
Table 
Address 
Table 

Lookup 
Address 

Update 
Header 

Header Processing 

Address 
Table 
Address 
Table 

Lookup 
Address 

Update 
Header 

Header Processing 

Address 
Table 
Address 
Table 

Queue 
Packet 

Buffer 
Memory 

Queue 
Packet 

Buffer 
Memory 

Queue 
Packet 

Buffer 
Memory 

Data Hdr 

Data Hdr 

Data Hdr 

1 

2 

N  

1 

2 

N 



Crossbars 

• N input ports, N output ports 
– One per line card, usually 

• Every line card has its own forwarding 
table/classifier/etc --- removes CPU bottleneck 

• Scheduler 
– Decides which input/output port pairs to connect in a given 

time slot 

– Often forward fixed-sized “cells” to avoid variable-length 
time slots 

– Crossbar constraint 

• If input i is connected to output j, no other input connected to 
j, no other output connected to i 

• Scheduling is a bipartite matching 

 30 



31 

Data Plane Details: Checksum 

• Takes too much time to verify checksum 
– Increases forwarding time by 21% 

• Take an optimistic approach: just 
incrementally update it 
– Safe operation: if checksum was correct it remains 

correct 

– If checksum bad, it will be anyway caught by end-
host 

• Note: IPv6 does not include a header 
checksum anyway! 

 



Multi-chassis routers 

• Multi-chassis router 
– A single router that is a distributed collection of racks 

– Scales to 322 Tbps, can replace an entire PoP 

32 
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Why multi-chassis routers? 

• ~ 40 routers per PoP (easily) in today’s Intra-PoP 
architectures 

• Connections between these routers require the 
same expensive line cards as inter-PoP connections 
– Support forwarding tables, QoS, monitoring, 

configuration, MPLS 

– Line cards are dominant cost of router, and racks often 
limited to sixteen 40 Gbps line cards 

• Each connection appears as an adjacency in the 
routing protocol 
– Increases IGP/iBGP control-plane overhead 

– Increases complexity of scaling techniques such as route 
reflectors and summarization 



34 

Multi-chassis routers  
to the rescue 

• Multi-chassis design: each line-card chassis has some fabric 
interface cards 
– Do not use line-card slots: instead uses a separate, smaller 

connection 

– Do not need complex packet processing logic � much cheaper than 
line cards 

• Multi-chassis router acts as one router to the outside world 
– Simplifies administration 

– Reduces number of iBGP adjacencies and IGP nodes/links without 
resorting to complex scaling techniques 

• However, now the multi-chassis router becomes a 
distributed system � Interesting research topics 
– Needs rethinking of router software (distributed and parallel) 

– Needs high resilience (no external backup routers) 

 

 



Matching Algorithms 



What’s so hard about IP packet 
forwarding? 

• Back-of-the-envelope numbers 
– Line cards can be 40 Gbps today (OC-768) 

• Getting faster every year! 

– To handle minimum-sized packets (~40b) 
• 125 Mpps, or 8ns per packet 

• Can use parallelism, but need to be careful about 
reordering 

• For each packet, you must 
– Do a routing lookup (where to send it) 

– Schedule the crossbar 

– Maybe buffer, maybe QoS, maybe ACLs,… 
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Routing lookups 

• Routing tables: 
200,000 to 1M entries 
– Router must be able to 

handle routing table loads 
5-10 years hence 

• How can we store routing 
state? 

– What kind of memory to 
use? 

• How can we quickly lookup 
with increasingly large 
routing tables? 
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Memory technologies 

• Vendors moved from DRAM (1980s) to SRAM (1990s) 
to TCAM (2000s) 

• Vendors are now moving back to SRAM and parallel 
banks of DRAM due to power/heat 
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Technology Single chip 
density 

$/MByte Access 
speed 

Watts/ 
chip 

Dynamic RAM (DRAM) 
cheap, slow 

64 MB $0.50-
$0.75 

40-80ns 0.5-2W 

Static RAM (SRAM) 
expensive, fast, a bit higher 
heat/power 

4 MB $5-$8 4-8ns 1-3W 

Ternary Content Addressable 
Memory (TCAM) 
very expensive, very high 
heat/power, very fast (does 
parallel lookups in hardware) 

1 MB $200-$250 4-8ns 15-30W 



Fixed-Length  
Matching Algorithms 



Ethernet Switch 

• Lookup frame DA in forwarding table. 
– If known, forward to correct port. 

– If unknown, broadcast to all ports. 

• Learn SA of incoming frame. 

• Forward frame to outgoing interface. 

• Transmit frame onto link. 

• How to do this quickly? 
– Need to determine next hop quickly 

– Would like to do so without reducing line rates 
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Why Ethernet needs wire-speed 
forwarding 

• Scenario: 
– Bridge has a 500 packet 

buffer 

– Link rate: 1 packet/ms 

– Lookup rate: 0.5 packet/ms 

– A sends 1000 packets to B 

– A sends 10 packets to C 

• What happens to C’s 
packets? 
– What would happen if this 

Bridge was a Router? 

• Need wirespeed 
forwarding 

41 

Bridge 

C 

A B 

C↑ 

A↓ 



Inside a switch 

• Packet received from upper Ethernet 

• Ethernet chip extracts source address S, stored in shared 
memory, in receive queue 

– Ethernet chips set in “promiscuous mode” 

• Extracts destination address D, given to lookup engine 
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Ethernet 2 

Ethernet 1 
Ethernet chip 

Ethernet chip 

Packet/lookup memory Processor 
Lookup 
engine 



Inside a switch 

• Lookup engine looks up D in database stored in memory 

– If destination is on upper Ethernet: set packet buffer pointer to 
free queue 

– If destination is on lower Ethernet: set packet buffer pointer to 
transmit queue of the lower Ethernet 

• How to do the lookup quickly? 
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Ethernet 2 

Ethernet 1 
Ethernet chip 

Ethernet chip 

Packet/lookup memory Processor 
Lookup 
engine 

F0:4D:A2:3A:31:9C � Eth 1 
00:21:9B:77:F2:65 � Eth 2 
8B:01:54:A2:78:9C � Eth 1 
00:0C:F1:56:98:AD � Eth 1 
00:B0:D0:86:BB:F7 � Eth 2 
00:A0:C9:14:C8:29 � Eth 2 
90:03:BA:26:01:B0 � Eth 2 
00:0C:29:A8:D0:FA � Eth 1 
00:10:7F:00:0D:B7 � Eth 2 



Problem overview 

• Goal: given address, look up outbound interface 
– Do this quickly (few instructions/low circuit 

complexity) 

• Linear search too low 
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F0:4D:A2:3A:31:9C � Eth 1 
00:21:9B:77:F2:65 � Eth 2 
8B:01:54:A2:78:9C � Eth 1 
00:0C:F1:56:98:AD � Eth 1 
00:B0:D0:86:BB:F7 � Eth 2 
00:A0:C9:14:C8:29 � Eth 2 
90:03:BA:26:01:B0 � Eth 2 
00:0C:29:A8:D0:FA � Eth 1 
00:10:7F:00:0D:B7 � Eth 2 

90:03:BA:26:01:B0 Eth 2 



Idea #1: binary search 

• Put all destinations in a list, sort them, 
binary search 

• Problem: logarithmic time 
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F0:4D:A2:3A:31:9C � Eth 1 
00:21:9B:77:F2:65 � Eth 2 
8B:01:54:A2:78:9C � Eth 1 
00:0C:F1:56:98:AD � Eth 1 
00:B0:D0:86:BB:F7 � Eth 2 
00:A0:C9:14:C8:29 � Eth 2 
90:03:BA:26:01:B0 � Eth 2 
00:0C:29:A8:D0:FA � Eth 1 
00:10:7F:00:0D:B7 � Eth 2 

00:0C:F1:56:98:AD � Eth 1 
00:10:7F:00:0D:B7 � Eth 2 
00:21:9B:77:F2:65 � Eth 2 
00:B0:D0:86:BB:F7 � Eth 2 
00:A0:C9:14:C8:29 � Eth 2 
00:0C:29:A8:D0:FA � Eth 1 
8B:01:54:A2:78:9C � Eth 1 
90:03:BA:26:01:B0 � Eth 2 
F0:4D:A2:3A:31:9C � Eth 1 

90:03:BA:26:01:B0 Eth 2 



Improvement:  
Parallel Binary search 

• Packets still have O(log n) delay, but 
can process O(log n) packets in parallel 
� O(1) 
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00:A0:C9:14:C8:29 

 
 

00:21:9B:77:F2:65 
 
 
 

8B:01:54:A2:78:9C 
 
 

 
00:10:7F:00:0D:B7 

 
00:B0:D0:86:BB:F7 

 
00:0C:29:A8:D0:FA 

 
90:03:BA:26:01:B0 

 

00:0C:F1:56:98:AD 
00:10:7F:00:0D:B7 
00:21:9B:77:F2:65 
00:B0:D0:86:BB:F7 
00:A0:C9:14:C8:29 
00:0C:29:A8:D0:FA 
8B:01:54:A2:78:9C 
90:03:BA:26:01:B0 
F0:4D:A2:3A:31:9C 

8B:01:54:A2:78:9C 

F0:4D:A2:3A:31:9C 

00:10:7F:00:0D:B7 



Improvement:  
Parallel Binary search 

• Packets still have O(log n) delay, but 
can process O(log n) packets in parallel 
� O(1) 
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00:A0:C9:14:C8:29 

 
 

00:21:9B:77:F2:65 
 
 
 

8B:01:54:A2:78:9C 
 
 

 
00:10:7F:00:0D:B7 

 
00:B0:D0:86:BB:F7 

 
00:0C:29:A8:D0:FA 

 
90:03:BA:26:01:B0 

 

00:0C:F1:56:98:AD 
00:10:7F:00:0D:B7 
00:21:9B:77:F2:65 
00:B0:D0:86:BB:F7 
00:A0:C9:14:C8:29 
00:0C:29:A8:D0:FA 
8B:01:54:A2:78:9C 
90:03:BA:26:01:B0 
F0:4D:A2:3A:31:9C 

8B:01:54:A2:78:9C 

F0:4D:A2:3A:31:9C 

00:10:7F:00:0D:B7 



01 

02 

04 

Idea #2: hashing 

• Hash key=destination, value=interface pairs 

• Lookup in O(1) with hash 

• Problem: chaining (not really O(1)) 

00 

hashes 

03 

01 

02 

04 
05 ... 

08 

function 
F0:4D:A2:3A:31:9C 

keys 

00:21:9B:77:F2:65 

8B:01:54:A2:78:9C 

00:0C:F1:56:98:AD 

00:B0:D0:86:BB:F7 
00:A0:C9:14:C8:29 

90:03:BA:26:01:B0 
00:0C:29:A8:D0:FA 
00:10:7F:00:0D:B7 

bins 

F0:4D:A2:3A:31:9C 

00:21:9B:77:F2:65 

8B:01:54:A2:78:9C 

00:0C:F1:56:98:AD 

00:B0:D0:86:BB:F7 00:A0:C9:14:C8:29 

90:03:BA:26:01:B0 

00:0C:29:A8:D0:FA 00:10:7F:00:0D:B7 
90:03:BA:26:01:B0 



Improvement: Perfect hashing 

• Perfect hashing: find a hash function that maps perfectly with 
no collisions 

• Gigaswitch approach 

– Use a parameterized hash function 

– Precompute hash function to bound worst case number of collisions 
49 

01 

02 

04 

00 

hashes 

03 

01 

02 

04 
05 ... 

08 

parameter 

F0:4D:A2:3A:31:9C 
keys 

00:21:9B:77:F2:65 

8B:01:54:A2:78:9C 

00:0C:F1:56:98:AD 
00:B0:D0:86:BB:F7 
00:A0:C9:14:C8:29 

90:03:BA:26:01:B0 
00:0C:29:A8:D0:FA 
00:10:7F:00:0D:B7 

bins 

F0:4D:A2:3A:31:9C 

00:21:9B:77:F2:65 

8B:01:54:A2:78:9C 

00:0C:F1:56:98:AD 

00:B0:D0:86:BB:F7 00:A0:C9:14:C8:29 

90:03:BA:26:01:B0 

00:0C:29:A8:D0:FA 00:10:7F:00:0D:B7 
90:03:BA:26:01:B0 



Variable-Length  
Matching Algorithms 



Longest Prefix Match 

• Not just one entry that matches a 
destination 
– 128.174.252.0/24 and 128.174.0.0/16 

– Which one to use for 128.174.252.14? 

– By convention, Internet routers choose the longest 
(most-specific) match 

 

• Need variable prefix match algorithms 
– Several methods  
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Method 1: Trie 

Sample Database 

• P1=10* 

• P2=111* 

• P3=11001* 

• P4=1* 

• P5=0* 

• P6=1000* 

• P7=100000* 

• P8=1000000* 

52 

• Tree of (left ptr, right ptr) data structures 

• May be stored in SRAM/DRAM 

• Lookup performed by traversing sequence of pointers 

• Lookup time O(log N) where N is # prefixes 

Trie 



Improvement 1: Skip Counts and 
Path Compression 

• Removing one-way branches ensures # of trie nodes is at most 
twice # of prefixes 

• Using a skip count requires exact match at end and 
backtracking on failure � path compression is simpler 

• Main idea behind Patricia Tries 53 



Improvement 2:  
Multi-way tree 

• Doing multiple comparisons per cycle accelerates lookup 
– Can do this for free to the width of CPU word (modern CPUs 

process multiple bits per cycle) 

• But increases wasted space (more unused pointers) 
54 

16-ary Search Trie 

0000, ptr 1111, ptr 

0000, 0 1111, ptr 

000011110000 

0000, 0 1111, ptr 

111111111111 



Improvement 2: Multi-way tree 
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Degree of
Tree

# Mem
References

# Nodes
(x106)

Total Memory
(Mbytes)

Fraction
Wasted (%)

2 48 1.09 4.3 49
4 24 0.53 4.3 73
8 16 0.35 5.6 86
16 12 0.25 8.3 93
64 8 0.17 21 98
256 6 0.12 64 99.5

Ew DL 1– 1 1 N

DL
-------–

 
 D–

 
  D i 1 Di 1––( )N 1 D1 i––( )N–( )

i 1=

L 1–

∑+=

En 1 DL 1 N

DL
-------–

 
 D Di D i 1– 1 Di 1––( )N–

i 1=

L 1–

∑+ +=

Where:

D Degree of tree=

L Number of layers/references=

N Number of entries in table =

En Expected number of nodes=

Ew Expected amount of wasted memory=

Table produced from 215 randomly generated 48-bit addresses 

 



Method 2: Lookups in Hardware 

56 

• Observation: most prefixes are /24 or shorter 

• So, just store a big 2^24 table with next hop for each prefix 

• Nonexistant prefixes � just leave that entry empty 

Prefix length 

N
um

be
r 



Method 2: Lookups in Hardware 
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14
2.

19
.6

.1
4 

Prefixes up to 24-bits 
14

2.
19

.6
 

14
 

1 Next Hop 

24 

Next Hop 

142.19.6 

224 = 16M entries 



Method 2: Lookups in Hardware 
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Method 2: Lookups in Hardware 

• Advantages 
– Very fast lookups 

• 20 Mpps with 50ns DRAM 

– Easy to implement in hardware 

 

• Disadvantages 
– Large memory required 

– Performance depends on prefix length distribution 

59 



Method 3: Ternary CAMs 

• “Content Addressable”  
– Hardware searches entire memory to find supplied value 

– Similar interface to hash table 

• “Ternary”: memory can be in three states 
– True, false, don’t care 

– Hardware to treat don’t care as wildcard match 

Selector 

Next Hop 

Associative Memory 

Value Mask Next hop 

10.0.0.0 255.0.0.0 IF 1 

10.1.0.0 255.255.0.0 IF 3 

10.1.1.0 255.255.255.0 IF 4 

10.1.3.0 255.255.255.0 IF 2 

10.1.3.1 255.255.255.255 IF 2 

Lookup 
Value 



Classification Algorithms 



Providing Value-Added Services 

• Differentiated services  

– Regard traffic from AS#33 as `platinumgrade’ 

• Access Control Lists 

– Deny udp host 194.72.72.33 194.72.6.64 0.0.0.15 eq snmp 

• Committed Access Rate 

– Rate limit WWW traffic from subinterface#739 to 10Mbps 

• Policybased Routing 

– Route all voice traffic through the ATM network 

• Peering Arrangements 

– Restrict the total amount of traffic of precedence 7 from 

– MAC address N to 20 Mbps between 10 am and 5pm  

• Accounting and Billing 

– Generate hourly reports of traffic from MAC address M 

• � Need to address the Flow Classification problem 62 



Flow Classification 
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Flow Index 

---- 
---- 

---- ---- 

---- 
---- 

Predicate Action 
Policy Database 

Flow Classification 

Forwarding Engine 

Incoming  
Packet 

H
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A Packet Classifier 
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Given a classifier, find the action associated with the highest priority 
rule  (here, the lowest numbered rule) matching an incoming packet. 

 Field 1 Field 2 … Field k Action 

Rule 1 152.163.190.69/21 152.163.80.11/32 … Udp A1 

Rule 2 152.168.3.0/24 152.163.200.157/16 … Tcp A2 

… … … … … … 

Rule N 152.168.3.0/16 152.163.80.11/32 … Any An 

 

 



Geometric Interpretation in 2D 
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R5 R4 

R3 

R2 
R1 

R7 

P2 

Field #1 

F
ie

ld
 #

2 

R6 

Field #1 Field #2 Data 

P1 

e.g. (128.16.46.23, *) 
e.g. (144.24/16, 64/24) 



Approach #1: Linear search 

• Build linked list of all classification rules 
– Possibly sorted in order of decreasing priorities 

 

• For each arriving packet, evaluate each rule 
until match is found 

 

• Pros: simple and storage efficient 

• Cons: classification time grows linearly with 
number of rules 
– Variant: build FSM of rules (pattern matching) 

66 



Approach #2: Ternary CAMs 

• Similar to TCAM use in prefix matching 
– Need wider than 32-bit array, typically 128-256 

bits 

 

• Ranges expressed as don’t cares below a 
particular bit 
– Done for each field 

 

• Pros: O(1) lookup time, simple 

• Cons: heat, power, cost, etc. 
– Power for a TCAM row increases proportionally to 

its width 
67 



Approach #3: Hierarchical trie 

• Recursively build d-dimensional radix trie 
– Trie for first field, attach sub-tries to trie’s leaves for sub-

field, repeat 

• For N-bit rules, d dimensions, W-bit wide dimensions: 
– Storage complexity: O(NdW) 

– Lookup complexity: O(W^d) 
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F1 

F2 



Approach #4: Set-pruning tries 

• “Push” rules down the hierarchical trie 

• Eliminates need for recursive lookups 

• For N-bit rules, d dimensions, W-bit wide dimensions: 
– Storage complexity: O(dWN^d) 

– Lookup complexity: O(dW) 
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F1 

F2 



Approach #5: Crossproducting 

• Compute separate 1-dimensional range 
lookups for each dimension 

• For N-bit rules, d dimensions, W-bit wide dimensions: 
– Storage complexity: O(N^d) 

– Lookup complexity: O(dW) 
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Other proposed schemes 

71 



Packet Scheduling and Fair Queuing 

 

 

 



Packet Scheduling:  
Problem Overview 

73 

• When to send packets? 

• What order to send them in? 



Approach #1:  
First In First Out (FIFO) 

74 

• Packets are sent out in the same order 
they are received 

• Benefits: simple to design, analyze 

• Downsides: not compatible with QoS 

• High priority packets can get stuck behind low 
priority packets 



Approach #2:  
Priority Queuing 

75 

• Operator can configure policies to give certain kinds of 
packets higher priority 
• Associate packets with priority queues 

• Service higher-priority queue when packets are available to be 
sent 

• Downside: can lead to starvation of lower-priority queues 

High 

Normal 

Low 

Classifier 



Approach #3:  
Weighted Round Robin 

76 

• Round robin through queues, but visit higher-priority queues more 
often 

• Benefit: Prevents starvation 

• Downsides: a host sending long packets can steal bandwidth 

• Naïve implementation wastes bandwidth due to unused slots 

60% (� 6 slots) 

30% (� 3 slots) 

10% (� 1 slots) 

1 

1 4 

1 

2 3 6 7 

2 3 4 5 

2 3 

4 5 

1 2 3 

6 

4 

5 1 2 

3 1 
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Overview 

• Fairness 

• Fair-queuing 

• Core-stateless FQ 

• Other FQ variants 
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Fairness Goals 

• Allocate resources fairly  

• Isolate ill-behaved users 

– Router does not send explicit feedback to 
source 

– Still needs e2e congestion control 

• Still achieve statistical muxing 

– One flow can fill entire pipe if no 
contenders 

– Work conserving � scheduler never idles 
link if it has a packet 
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What is Fairness? 

• At what granularity? 
– Flows, connections, domains? 

• What if users have different RTTs/links/etc. 
– Should it share a link fairly or be TCP fair? 

• Maximize fairness index? 
– Fairness = (Σxi)

2/n(Σxi
2)   0<fairness<1 

• Basically a tough question to answer – 
typically design mechanisms instead of policy 
– User = arbitrary granularity 



What would be a fair allocation 
here? 

 

80 
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Max-min Fairness 

• Allocate user with “small” demand what 
it wants, evenly divide unused 
resources to “big” users 

• Formally: 
• Resources allocated in terms of increasing 

demand 

• No source gets resource share larger than its 
demand 

• Sources with unsatisfied demands get equal 
share of resource 
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Max-min Fairness Example 

• Assume sources 1..n, with resource 
demands X1..Xn in ascending order 

• Assume channel capacity C. 

– Give C/n to X1; if this is more than X1 
wants, divide excess (C/n - X1) to other 
sources: each gets C/n + (C/n - X1)/(n-1) 

– If this is larger than what X2 wants, repeat 
process 
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Implementing max-min Fairness 

• Generalized processor sharing 

– Fluid fairness 

– Bitwise round robin among all queues 

• Why not simple round robin? 
– Variable packet length � can get more 

service by sending bigger packets 

– Unfair instantaneous service rate 
• What if arrive just before/after packet departs? 
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Bit-by-bit RR 

• Single flow: clock ticks when a bit is 
transmitted. For packet i: 
– Pi = length, Ai = arrival time, Si = begin 

transmit time, Fi = finish transmit time 

– Fi = Si+Pi  = max (Fi-1, Ai) + Pi 

• Multiple flows: clock ticks when a bit 
from all active flows is transmitted � 
round number 
– Can calculate Fi for each packet if number 

of flows is know at all times 
• This can be complicated 



Approach #4:  
Bit-by-bit Round Robin 
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• Round robin through “backlogged” queues (queues with pkts to 
send) 

• However, only send one bit from each queue at a time 

• Benefit: Achieves max-min fairness, even in presence of variable 
sized pkts 

• Downsides: you can’t really mix up bits like this on real networks! 

20 bits 

5 bits 

10 bits 

Output queue 
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The next-best thing:  
Fair Queuing 

• Bit-by-bit round robin is fair, but you 
can’t really do that in practice 

 

• Idea: simulate bit-by-bit RR, compute 
the finish times of each packet 

– Then, send packets in order of finish times 

– This is known as Fair Queuing 
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What is Weighted Fair Queuing? 

• Each flow i given a weight (importance) wi 

• WFQ guarantees a minimum service rate to 
flow i 
– ri = R * wi  / (w1 + w2 + ... + wn) 

– Implies isolation among flows (one cannot mess 
up another) 

w1 

w2 

wn 

R 

Packet queues 
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What is the Intuition? Fluid Flow 

w1 

water pipes 
w2 

w3 

t1 

t2 

w2 w3 

water buckets 

w1 
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Fluid Flow System 

• If flows could be served one bit at a time: 

 

• WFQ can be implemented using bit-by-bit 
weighted round robin 

–During each round from each flow that has 
data to send, send a number of bits equal to 
the flow’s weight 
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Fluid Flow System: Example 1 

1 2 3 
1 2 

4 
3 4 

5 
5 6 

Flow 2 
(arrival traffic) time 

Flow 1 
(arrival traffic) time 

1 2 3 4 5 

1 2 3 4 5 6 

Packet 
Size (bits) 

Packet inter-arrival 
time (ms) 

Arrival 
Rate 

(Kbps) 

Flow 1 1000 10 100 

Flow 2 500 10 50 

100 Kbps Flow 1 (w1 = 1) 

Flow 2 (w2 = 1) 

Service 
in fluid flow  

system time (ms) 0 10 20 30 40 50 60 70 80 
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Fluid Flow System: Example 2 

0 15 2 10 4 6 8 

5 1 1 1 1 1 

• Red flow has packets 
backlogged between time 0 
and 10 

– Backlogged flow � flow’s 
queue not empty  

• Other flows have packets 
continuously backlogged 

• All packets have the same size 

flows 

link 

weights 
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Implementation in Packet 
System 

• Packet (Real) system: packet 
transmission cannot be preempted. 
Why? 

 

• Solution: serve packets in the order in 
which they would have finished being 
transmitted in the fluid flow system 
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Packet System: Example 1 

0 2 10 4 6 8 

0 2 10 4 6 8 

• Select the first packet that finishes in the fluid flow system 

Service 
in fluid flow  

system 

Packet 
system 
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Packet System: Example 2 

1 2 1 3 2 3 4 4 5 5 6 Packet 
system time 

1 2 3 
1 2 

4 
3 4 

5 
5 6 

Service 
in fluid flow  

system time (ms) 

• Select the first packet that finishes in the fluid flow system 
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Implementation Challenge 

• Need to compute the finish time of a 
packet in the fluid flow system… 

• … but the finish time may change as 
new packets arrive! 

• Need to update  the finish times of all 
packets that are in service in the fluid 
flow system when a new packet arrives 

–But this is very expensive; a high speed 
router may need to handle hundred of 
thousands of flows! 
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Example 

• Four flows, each with weight 1 
Flow 1 

time 

time 

ε 

time 

time 

Flow 2 

Flow 3 

Flow 4 

0 1 2 3 

Finish times computed at time 0 

time 

time 

Finish times re-computed at time ε 

0 1 2 3 4 



Approach #5:  
Self-Clocked Fair Queuing 
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A 9 8 7 6 5 4 3 2 1 

2 1 

4 3 2 1 

Output queue 

Virtual time 

Real time (or, # bits processed) 

1 
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Solution: Virtual Time 

• Key Observation: while the finish times of 
packets may change when a new packet 
arrives, the order in which packets finish 
doesn’t! 

–Only the order is important for scheduling 

• Solution: instead of the packet finish time 
maintain the  round # when a packet 
finishes (virtual finishing time) 

–Virtual finishing time doesn’t change when a 
packet arrives 
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Example 

• Suppose each packet is 1000 bits, so takes 1000 
rounds to finish 

• So, packets of F1, F2, F3 finishes at virtual time 
1000 

• When packet F4 arrives at virtual time 1 (after 
one round), the virtual finish time of packet F4 is 
1001 

• But the virtual finish time of packet F1,2,3 
remains 1000 

• Finishing order is preserved 

Flow 1 

time 

time 

ε 

time 

time 

Flow 2 

Flow 3 

Flow 4 
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System Virtual Time (Round #): V(t) 

• V(t) increases inversely proportionally to the sum of the 
weights of the backlogged flows 
– During one tick of V(t), all backlogged flows can transmit one bit  

• Since round # increases slower when there are more flows 
to visit each round. 

1 2 3 
1 2 

4 
3 4 

5 
5 6 

Flow 2 (w2 = 1) 
 

Flow 1 (w1 = 1) 

time 

time 

C 

C/2 V(t) 



Is Fair Queuing perfectly fair? 

• No. Example: Once we begin transmission of 
a packet, it’s possible a new packet arrives 
that would have a smaller finishing time than 
the current packet 
– FQ is non-preemptive, so keep transmitting 

current packet 

 

• However, if a packet is sitting in an output 
queue with its finish time calculated, and a 
new packet arrives with a sooner finish time, 
the new packet will be sent first 

101 
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Fair Queueing Implementation 

• Define 
–    - virtual finishing time of packet k of flow i 

–    - arrival time of packet k of flow i 

–     - length of packet k of flow i 

– wi – weight of flow i 

 

• The finishing time of packet k+1 of flow i is 

 

 

• Smallest finishing time first scheduling policy 

k
iL

k
ia

k
iF

111 )),(max( +++ += k
i

k
i

k
i

k
i LFaVF / wi 
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Properties of WFQ 

• Guarantee that any packet is 
transmitted within 
packet_length/link_capacity of its 
transmission time in the fluid flow 
system 

–Can be used to provide guaranteed services 

• Achieve fair allocation 

–Can be used to protect well-behaved flows 
against malicious flows 
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Fair Queuing Tradeoffs 

• FQ can control congestion by monitoring flows 
– Non-adaptive flows can still be a problem – why? 

 

• Complex state 
– Must keep queue per flow 

• Hard in routers with many flows (e.g., backbone routers) 

• Flow aggregation is a possibility (e.g. do fairness per domain) 

 

• Complex computation 
– Classification into flows may be hard 

– Must keep queues sorted by finish times 

– Finish times change whenever the flow count changes 
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Overview 

• Fairness 

• Fair-queuing 

• Core-stateless FQ 

• Other FQ variants 
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Core-Stateless Fair Queuing 

• Key problem with FQ is core routers 
– Must maintain state for 1000’s of flows 

– Must update state at Gbps line speeds 

• CSFQ (Core-Stateless FQ) objectives 
– Edge routers should do complex tasks since they 

have fewer flows 

– Core routers can do simple tasks 
• No per-flow state/processing � this means that core 

routers can only decide on dropping packets not on 
order of processing 

• Can only provide max-min bandwidth fairness not delay 
allocation 
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Core-Stateless Fair Queuing 

• Edge routers keep state about flows 
and do computation when packet 
arrives 

• DPS (Dynamic Packet State) 

– Edge routers label packets with the result 
of state lookup and computation 

• Core routers use DPS and local 
measurements to control processing of 
packets 
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Edge Router Behavior 

• Monitor each flow i to measure its 
arrival rate (ri) 

– EWMA of rate 

– Non-constant EWMA constant  
• e-T/K where T = current interarrival, K = 

constant 

• Helps adapt to different packet sizes and arrival 
patterns 

• Rate is attached to each packet 
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Core Router Behavior 

• Keep track of fair share rate α 

– Increasing α does not increase load (F) by 
N * α 

– F(α) = Σi min(ri, α) � what does this look 
like? 

– Periodically update α 

– Keep track of current arrival rate 
• Only update α if entire period was congested or 

uncongested 

• Drop probability for packet = max(1- 
α/r, 0) 
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F vs. Alpha 

New alpha 

C [linked capacity] 

r1 r2 r3 old alpha 
alpha 

F 
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Estimating Fair Share 

• Need F(α) = capacity = C 
– Can’t keep map of F(α) values � would require 

per flow state 

– Since F(α) is concave, piecewise-linear 
• F(0) = 0 and F(α) = current accepted rate = Fc 

• F(α) = Fc/ α 

• F(αnew) = C � αnew = αold * C/Fc 

• What if a mistake was made? 
– Forced into dropping packets due to buffer 

capacity 

– When queue overflows α is decreased slightly 
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Other Issues 

• Punishing fire-hoses – why? 

– Easy to keep track of in a FQ scheme 

• What are the real edges in such a 
scheme? 

– Must trust edges to mark traffic accurately 

– Could do some statistical sampling to see if 
edge was marking accurately 
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Overview 

• Fairness 

• Fair-queuing 

• Core-stateless FQ 

• Other FQ variants 

 



Stochastic Fair Queuing 

• Compute a hash on each packet 

• Instead of per-flow queue have a queue 
per hash bin 

• An aggressive flow steals traffic from 
other flows in the same hash 

• Queues serviced in round-robin fashion 
– Has problems with packet size unfairness 

• Memory allocation across all queues 
– When no free buffers, drop packet from 

longest queue 
114 
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Deficit Round Robin 

• Each queue is allowed to send Q bytes per 
round 

• If Q bytes are not sent (because packet is too 
large) deficit counter of queue keeps track of 
unused portion 

• If queue is empty, deficit counter is reset to 0 

• Uses hash bins like Stochastic FQ 

• Similar behavior as FQ but computationally 
simpler 
– Bandwidth guarantees, but no latency guarantees 



Deficit Round Robin 
Example 

Matthew Caesar (caesar@uiuc.edu) 116 

1500 

800 

1200 

Deficit=0 

Deficit=0 

Deficit=0 

1. Increment deficit counter by 
Quantum Size 

2. Send packet if size is greater than 
deficit 

3. When you send a packet, 
subtract its size from the deficit 

Quantum Size = 1000 

1000 

1000 

1000 
2000 

500 

2000 

200 Outbound queue 

800 
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Self-clocked Fair Queuing 

• Virtual time to make computation of 
finish time easier 

• Problem with basic FQ 
– Need be able to know which flows are 

really backlogged 
• They may not have packet queued because 

they were serviced earlier in mapping of bit-by-
bit to packet 

• This is necessary to know how bits sent map 
onto rounds 

• Mapping of real time to round is piecewise 
linear � however slope can change often 
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Self-clocked FQ 

• Use the finish time of the packet being 
serviced as the virtual time 

– The difference in this virtual time and the 
real round number can be unbounded 

• Amount of service to backlogged flows 
is bounded by factor of 2 
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Start-time Fair Queuing 

• Packets are scheduled in order of their 
start not finish times 

• Self-clocked � virtual time = start time 
of packet in service 

• Main advantage � can handle variable 
rate service better than other schemes 


