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Today: Distributed Internet 
Services

• Previous cycle: how to build Internet 
services that run at a single location

• However, some modern services are 
built across many locations

– Content distributed over the wide area, 
multiple sites

– Need techniques to coordinate operations 
of distributed software running in the wide 
area

• Today: Overlay networks, DHTs 2



Overlay networks: Motivations

• Protocol changes in the network happen very 
slowly

• Why?
– Internet is shared infrastructure; need to achieve 

consensus

– Many proposals require to change a large number 
of routers (e.g. IP Multicast, QoS); otherwise end-
users won’t benefit

• Proposed changes that haven’t happened yet 
on large scale:
– More addresses (IPv6, 1991)

– Security (IPSEC, 1993); Multicast (IP multicast, 
1990)



Overlay networks: Motivations

• Also, “one size does not fit all”

• Applications need different levels of

– Reliability

– Performance (latency

– Security

– Access control (e.g., who is allowed to join 
a multicast group)



Overlay networks: Goals

• Make it easy to deploy new 
functionalities in the network �

Accelerate the pace of innovation

• Allow users to customize their service



Solution

• Build a computer network on top of another 
network
– Individual hosts autonomously form a “virtual” 

network on top of IP

– Virtual links correspond to inter-host connections 
(e.g., TCP sessions)



Example: 
Resilient Overlay Networks

• Premise: by building an application-layer overlay 
network, can increase performance and reliability of 
routing

• Install N computers at different Internet locations

• Each computer acts like an overlay network router
– Between each overlay router is an IP tunnel (logical link)

– Logical overlay topology is all-to-all (N2 total links)

• Run a link-state routing algorithm over the overlay 
topology 
– Computers measure each logical link in real time for packet 

loss rate, throughput, latency � these define link costs

– Route overlay traffic based on measured characteristics



Motivating example: 
a congested network
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Solution: an “overlay” network

R

R
R

R

R

R

A B

C
Establish TCP 

sessions (“overlay 
links”) between hosts

A B

C
Loss=1%

Loss=2%

Loss=25%

Path taken by 
TCP sessions

Machines 
remember overlay 

topology, probe 
links, advertise 

link quality



Benefits of overlay networks

• Performance: 

– Difficult to provide QoS at network-layer due to 
deployment hurdles, lack of incentives, 
application-specific requirements 

– Overlays can probe faster, propagate more routes 

• Flexibility: 

– Difficult to deploy new functions at IP layer

– Can perform multicast, anycast, QoS, security, etc



New problem: scalability

A B

C

Outdegree=2
8

Problems:
Number of links increases with O(n^2)

Link-state overhead increases with O(n^3)!



Alternative: 
replace full-mesh with logical ring

A B

C

Problem:
Stretch increases with O(n)

Still requires O(n) state per node D

E

F



Alternative: 
replace full-mesh with ring

Problem:
Stretch: increases with O(n)
State: still requires O(n) state per node



Improvement: 
keep some long distance pointers

Improvement:
Stretch: reduces to O(lg n)
State: reduces to O(lg n)



Scaling overlay networks with
Distributed Hash Tables (DHTs)

• Assign each host a numeric identifier
– Randomly chosen, hash of node name, public key, etc

• Keep pointers (fingers) to other nodes
– Goal: maintain pointers so that you can reach any 

destination in few overlay hops
– Choosing pointers smartly can give low delay, while 

retaining low state

• Can also store objects
– Insert objects by “consistently” hashing onto id space

• Forward by making progress in id space

• General concept: distributed data structures



Different kinds of DHTs

• Different topologies give different bounds on stretch (delay 
penalty)/state, different stability under churn, etc. Examples:

• Chord
– Pointers to immediate successor on ring, nodes spaced 2^k around 

ring
– Forward to numerically closest node without overshooting

• Pastry
– Pointers to nodes sharing varying prefix lengths with local node, 

plus pointer to immediate successor
– Forward to numerically closest node

• Others: Tapestry (like Pastry, but no successor pointers), 
Kademlia (like Pastry but pointers to varying XOR distances), 
CAN (like Chord, but torus namespace instead of ring)



The Chord DHT

“Fingers” maintained 
for performance

Each node assigned 
numeric identifier from

circular id-space

“Successors” 
maintained for 
correctness 504504+1

504+2

504+4

504+8

504+16

504+3



Chord Example: Forwarding a lookup

dest=802
000999

106

802

Cuts namespace-distance in half per 
hop
+

You can divide any integer N in half at 
most log(N) times

= logarithmic stretch



Chord Example: Joining a new node

000999

406

1. Joining node must be 
aware of a “bootstrap” node 
in DHT. Joining node sends 

join request through 
bootstrap node towards the 

joining node’s ID
Join(406)

798

2. Bootstrap forwards 
message towards joining 

node’s ID, causing 
message to resolve to 
joining node’s future 

successor

410 398

3. Successor informs 
predecessor of its new 

successor, adds 
joining node as new 

predecessor



Chord: Improving robustness

• To improve robustness, each node can 
maintain more than one successor

– E.g., maintain the K>1 successors immediately 
adjacent to the node

• In the notify() message, node A can send its 
k-1 successors to its predecessor B

• Upon receiving the notify() message, B can 
update its successor list by concatenating the 
successor list received from A with A itself



Chord: Discussion

• Query can be implemented 
– Iteratively

– Recursively

• Performance: routing in the overlay network 
can be more expensive than routing in the 
underlying network
– Because usually no correlation between node ids 

and their locality; a query can repeatedly jump 
from Europe to North America, though both the 
initiator and the node that store them are in 
Europe!

– Solutions: can maintain multiple copies of each 
entry in their finger table, choose closest in terms 
of network distance



The Pastry DHT
1320’s pointer table (base=4, digits=4)

Increasing digit ���� In
creasin

g
p

refix
len

g
th

 �� ��

1*:         2*:         3*:         0*:         
11*:         12*:         13*:         

131*:         132*:         133*:         
10*:         
130*:         

1321:         1322:         1323:         1320:         
1320

Pointers to neighbors that 
match my ID with varying 
prefix lengths,with most 
significant digit varied

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

Goal: fill each “pointer table” 
entry with topologically-

nearby nodes (1320 points 
to 2032 instead of 2211, 

even though they both fit in 
this position)

1322

My own ID matches, can 
leave blank (next row 
down will have more 

specific match anyway)

No node fits 
here, leave 

blank

1310

2032 3233
1103 1221
1310 1333

0002
1023

1321 1323

1321

1323



The Pastry DHT

1320

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

1322

1310

1321

1323

dst=3122

1320’s pointer table (base=4, digits=4)
1*:         2*:         3*:         0*:         
11*:         12*:         13*:         

131*:         132*:         133*:         
10*:         
130*:         

1321:         1322:         1323:         1320:         

1103
1310
1321

2032 3233
1221

1333
1323

0002
1023 Forward to node in 

table with identifier 
sharing longest prefix 

with destination

3233’s pointer table (base=4, digits=4)
1*:  1320   2*:         3*:         0*:         
31*:         32*:         33*:         
321*:         322*:         323*:         

30*:         
320*:         

3231:         3232:         3233:         3230:         

3103
2130

3211    
0002

3103’s pointer table (base=4, digits=4)
1*:  1320   2*:         3*:         0*:         
31*:         32*:         33*:         
311*:         312*: 3122 313*:         

30*:         
310*:         

3101:         3102:         3103:         3100:         

2032
3211   

0002

Fixes one digit per hop
+

logarithmic number of digits per hop
= logarithmic stretch



The Pastry DHT

1320

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

1322

1310

1321

1323

3231

3231’s pointer table (stored in join pkt)
1*:  1320  2*:         3*:         0*:         

31*:         32*:         33*:         
321*:         322*: 3221 323*:         

30*:         
320*:         

3231:         3232:         3233:         3230:         

3103
3211

2130 3122
3211

3233
3233

0002

Join (dst=3231)

1321’s pointer table (base=4, digits=4)
1*:  1320  2*:         3*:         0*:         

11*:         12*:         13*:         
131*:         132*:         133*:         

10*:         
130*:         

1321:         1322: 1322 1323:         1320:         
1310

2130 3122
1323 
1333
1323      

0002
1023 

3122’s pointer table (base=4, digits=4)
1*:  1320  2*:         3*:         0*:         

31*:         32*:         33*:         
311*:         312*:        313*:         

30*:         
310*: 3103 

3121:         3122:         3123:         3120:         

3103
3211

2032
3211

0002
3211’s pointer table (base=4, digits=4)

1*:  1320  2*:         3*:         0*:         
31*:         32*:         33*:         
321*:         322*: 3221 323*:         

30*:         
320*:         

3211:         3212:         3213:         3210:         

3103
2032

3233

0002
3233’s pointer table (base=4, digits=4)

1*:  1320  2*:         3*:         0*:         
31*:         32*:         33*:         
321*:         322*: 3221 323*:         

30*:         
320*:         

3231:         3232:         3233:         3230:         

3103
3211

2032
3211

3233

0002



Content Addressable Network (CAN)

• Associate to each node and item a 
unique id in a d-dimensional space

• Properties

– Routing table size O(d)

– Guarantees that a file is found in at most 
d*n1/d steps, where n is the total number 
of nodes



CAN Example: 
Two dimensional space

• Space divided between 
nodes

• All nodes cover the 
entire space

• Each node covers either 
a square or a 
rectangular area of 
ratios 1:2 or 2:1

• Example:
– Assume space size (8x8)

– Node n1:(1,2) first node 
that joins

• Cover the entire space



CAN Example: 
Two dimensional space

• Node n2:(4,2) 
joins � space is 

divided between 
n1 and n2



CAN Example: 
Two dimensional space

• Node n2:(4,2) 
joins � space is 

divided between 
n1 and n2



CAN Example: 
Two dimensional space

• Nodes n4:(5,5) 
and n5:(6,6) join



CAN Example: 
Two dimensional space

• Nodes: 
– n1:(1,2)
– n2:(4,2)
– n3:(3,5)
– n4:(5,5)
– n5:(6,6)

• Items:
– f1(2,3)
– f2(5,1)
– f3:(2,1)
– f4(7,5)



CAN Example: 
Two dimensional space

• Each item is 
stored at the node 
who owns the 
mapping in its 
space



CAN Example: 
Two dimensional space

• Query example:

• Each node knows its 
neighbors in the d-
space

• Forward query to the 
neighbor that is 
closest to the query 
id

• Example: assume n1 
queries f4



Preserving consistency

• What if a node fails?

– Solution: probe neighbors to make sure 
alive, proactively replicate objects

• What if node joins in wrong position?

– Solution: nodes check to make sure they 
are in the right order

– Two flavors: weak stabilization, and strong 
stabilization



Chord Example: weak stabilization

000999

732

885

900
051

122

480

502

538
619

670

Check: if my successor’s 
predecessor is a better match for 

my successor

n.stablize():
x=successor.predecessor;
if (x in (n, successor))
successor=x

successor.notify(n)

Tricky case: zero position on 
ring



Example where weak stabilization 
fails

000999

480

720

891
619

670

885

900

051
122

301

n.stablize():
x=successor.predecessor;
if (x in (n, successor))

successor=x
successor.notify(n)



Comparison of DHT geometries

Geometry Algorithm

Ring Chord

Hypercube CAN

Tree Plaxton

Hybrid =
Tree + Ring

Tapestry, Pastry

XOR
d(id1, id2) = id1 XOR id2

Kademlia



Comparison of DHT algorithms

• Node degree: The number of neighbors per node
• Dilation: Length of longest path that any packet traverses in the 

network
– Stretch: Ratio of longest path to shortest path through the underlying 

topology

• Congestion: maximum number of paths that use the same link



Security issues

• Sybil attacks
– Malicious node pretends to be many nodes
– Can take over large fraction of ID space, files

• Eclipse attacks
– Malicious node intercepts join requests, replies 

with its cohorts as joining node’s fingers

• Solutions:
– Perform several joins over diverse paths, PKI, 

leverage social network relationships, audit by 
sharing records with neighbors



Hashing in networked software

• Hash table: maps identifiers to keys
– Hash function used to transform key to index 

(slot)
– To balance load, should ideally map each key to 

different index

• Distributed hash tables
– Stores values (e.g., by mapping keys and values 

to servers)
– Used in distributed storage, load balancing, peer-

to-peer, content distribution, multicast, anycast, 
botnets, BitTorrent’s tracker, etc.



01

02

04

Background: hashing

00

hashes

03

01

02

04
05...

08

function

Ahmed

Yan

John

Viraj

keys



Example

• Example: Sum ASCII digits, mod number of bins

• Problem: failures cause large shifts

00

hashes

01

02
03
04
05

function

Yan

John

Ahmed

Viraj

keys

A   H    M   E   D

Y    A   N
89+65+78=232
232%9=7

J    O   H    N
74+79+72+78=303
303%9=6

V    I    R    A    J
86+73+82+65+74=380
380%9=2

06
07
08

00

02

06
07

65+72+77+69+68=351
351%9=0 351%8=1

232%8=1

303%8=2

380%8=2

Ahmed

Yan

John

Viraj

04

05

06
07

01

02

___________________



Solution: Consistent Hashing

• Hashing function that reduces churn

• Addition or removal of one slot does not 
significantly change mapping of keys to slots

• Good consistent hashing schemes change 
mapping of K/N entries on single slot addition

– K: number of keys

– N: number of slots

• E.g., map keys and slots to positions on circle

– Assign keys to closest slot on circle



Solution: Consistent Hashing

• Slots have IDs selected randomly from [0,100]

• Hash keys onto same space, map key to closest bin

• Less churn on failure � more stable system

hashesfunction

Yan

John

Ahmed

Viraj

keys

Y    A   N
89+65+78=232
232%100=32

J    O   H    N
74+79+72+78=303
303%100=3

V    I    R    A    J
86+73+82+65+74=380
380%100=80

A   H    M   E   D
65+72+77+69+68=351
351%100=51

04
08
26
27
35
41
47
65
70
81



Network layer DHTs
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Postal Service

Scenario: Sending a Letter

3400 Walnut St.                   
Philadelphia, PA 
19104 

Address:

450 Lancaster Ave.     3400 Walnut St.

900 Spruce St.     

Name: B

A B



Scenario: Address Allocation

450 Lancaster Ave.      3400 Walnut St.

19104

19105

19107
A B

3400 Walnut St.                 
Philadelphia, PA
19104

Address:
Name: B



Postal Service

Scenario: Access Control

3400 Walnut St.

900 Spruce St.      

“Inspect mail to 
3400 Walnut St.”

450 Lancaster Ave.

C

D

3400 Walnut St.                  
Philadelphia, PA
19104

Address: 900 Spruce St. 
Philadelphia, PA 
19104

Address:
Name: C

Name: C



How Routing Works Today

• Each node has an identity
• Goal: find path to destination

Send(msg,Q)

B

J

S

K

Q

F

V

X

A



Area 1

Area 2

Area 4

Area 3

Scaling Requires Aggregation

• Pick addresses that depend on location
• Aggregation provides excellent scaling properties
• Key is topology-dependent addressing!

B

J

S

K

Q

F

V

X

A

1.1 1.2

2.1
2.2

4.2

4.1

3.3
3.2

3.1



Topology-Dependent Addresses 
Aren’t Always Possible

• Networks can’t use topology-dependent 
addresses because topology changes so 
rapidly

• Decades-long search for scalable 
routing algorithms for ad hoc networks



Topology-Dependent Addresses 
Aren’t Always Desirable

• Using topology-based addresses in the 
Internet complicates access controls, 
mobility, and multihoming

• Would like to embed persistent 
identities into network-layer addresses



Can We Scale without Topology-
Dependent Addresses?

• Is it possible to scale without 
aggregation?

• Distributed Hash Tables don’t solve this 
problem



This Talk

• Will describe how to route scalably on 
flat identifiers that applies to both:

• Wireless networks:

– Challenge is dynamics

• Wired networks:

– Challenge is scale, policies, and dynamics



Outline

• Routing on an abstract graph

– What state is maintained

– How to route using that state

– How to correctly maintain state

• Wireless sensornet implementation

• Evaluation for Internet routing

• Conclusions



J
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F

V

A

S

Network 
topology

X

State maintained at each node

A F J K Q S V X

J

K

F

1. Write down 
sorted list of IDs

2. Build paths 
between 
neighbors in list 

Virtual 
topology

F

A

J

K
Q

V

S

X



J

K Q

F

V

A

S

Network 
topology

X

How to forward packets

Virtual 
topology

F

A

J

K
Q

V

S

X

Send(K,F)

Q

J

K

F



J

K Q

F

V

A

S

Network 
topology

X

The stretch problem

Virtual 
topology

F

A

J

K
Q

V

S

X

Send(J,V)

J F
A

X

V

Resulting path length: 
10 hops

Shortest path length: 
3 hops



J

K Q

F

V

A

S

Network 
topology

X

Optimization: shortcutting

Virtual 
topology

F

A

J

K
Q

V

S

X

Send(J,V)

Resulting path length: 
4 hops

Shortest path length: 
3 hops

J F
X

V

A

X



A summary so far…

• The algorithm has two parts

– Route linearly around the ring

– Shortcut when possible

• Up next, the technical details…



Joining a new node

J

K Q

F

V

X

A

B

Network 
topology

S

B

K

J
F

Join(B)

F

A

J

K
Q

V

S

X

Virtual 
topology

{A,F,J}

B



How to maintain state

J

K Q

F

V

X

A

Network 
topology

S

J
F

F

A

J

K
Q

V

S

X

Virtual 
topology Goal #2:

Ensure each pointer path points to 
correct global successor/predecessor

Goal #1:
Ensure each pointer path is 
properly maintained



Path maintenance

• Nodes maintain (endpoint ID, next hop) pairs per-path
• Local fault detection, teardowns remove path state
• Local repair sometimes possible

J PX SA F

(id F,
nh X )

(id F,
nh P )

(id F,
nh A )

(id F,
nh S )

(id F,
nh F )

(id F,
nh F )

J F
Virtual link

Network 
topology



Path maintenance

• Nodes maintain (endpoint ID, next hop) pairs per-path
• Local fault detection, teardowns remove path state
• Local repair sometimes possible

J PX SA F

(id F,
Nh X )

(id F,
nh P )

(id F,
nh A
nnh S)

(id F,
nh S )

(id F,
nh F )

(id F,
nh F )

H

(id F,
nh H
nnh S)

J F
Virtual link

Network 
topology



Challenges of ring maintenance

• Need to ensure network-level events don’t cause ring 
partitions, misconvergence

J

K Q

F

V

X

B

F

Q

V

B

K

X

J J

F

K
Q

V

X B



Ring maintenance

• Base mechanism: 

– Discover node Z closest to 
zero position, distributes 
Z’s ID throughout partition

• Inductive mechanism:  

– Set N’s successor to be the 
closest among:

• N’s current successor

• N’s successor’s predecessor

• The zero node Z

Z
0

NS
S.pred

S



[1…k-2]

[k+1…0]

Ring maintenance: proof sketch

• Consider ring with nodes 
{0…N}, assume routing has 
converged

• Base case: N’s successor must 
point to 0

• Inductive step: k-1 must point 
to k
– if k-1 points to S in [k+1…0],   

S would inform k-1 about S-1
� not converged

– if k-1 points to S in [1…k-2], 
then k-1 would change to point 
to zero node 0 � not converged

0
N

k k-1

Reachability property: If there is a network level path 
between two nodes A and B, A can route to B via the  ring



Outline

• Introduction

• Routing on an abstract graph

• Wireless sensornet implementation

– Motivation behind using flat IDs

– Methodology: sensornet implementation

– Results from deployment

• Evaluation for Internet routing

• Conclusions



Why flat IDs for wireless?

• Multihop wireless networks on the horizon

– Rooftop networks, sensornets, ad-hoc networks

• Flat IDs scale in dynamic networks

– No location service needed

– Flood-free maintenance reduces state, control traffic

• Developed and deployed prototype 
implementation for wireless sensornets

– Extensions: failure detection, link-estimation



Methodology

• TinyOS implementation: Virtual Ring Routing (VRR)
– Deployment on testbed: 67 mica2dot motes (4KB 

memory, 19.2kbps radio)

– Compared with Beacon Vector Routing (BVR), AODV, DSR

• Metrics: Delivery ratio, control overhead



Effect of node failure

• Both VRR and BVR perform well

• BVR’s performance degrades because of 
coordinate instability and overhead to recover 
from failures
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Transmission overhead

• Flat routing requires no scoped 
flooding, which reduces transmission 
overhead
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Effect of congestion

• Flat-routing resilient to congestion losses, 
since identifiers topology-independent
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Outline

• Introduction

• Routing on an abstract graph

• Wireless sensornet implementation

• Evaluation for Internet routing

– Motivation behind using flat IDs

– Extensions to support policies, improve scaling

– Performance evaluation on Internet-size graphs

• Conclusions



Why flat IDs for the Internet?

• Today’s Internet conflates addressing 
with identity

• Flat IDs sidestep this problem 
completely

– Provides network routing without any 
mention of location

– Benefits: no need for name resolution 
service, simpler configuration, simpler 
access controls



Challenges of Internet routing

• Internet routing is very different from 
wireless routing

– Challenges: policies, scaling

• Need new mechanisms to deal with 
these challenges

– Policy-safe successor paths

– Locality-based pointer caching



Flat IDs for Internet routing

ISPISP

0xFA2910x3B57E
(joining 
host)

0x3F6C0

0x3BAC8
0x3B57E

0x3F6C0

Successor list: 
0x3F6C0

Pointer list:    
0x3F6C0
0x3BAC8

Pointer cache: 
0x3B57E

2. hosting routers
participate in protocol 
on behalf of hosts

3. hosting routers maintain 
pointers with source-routesto 
attached hosts’ 
successors/fingers

4. intermediate 
routers may cache 
pointers

5. external pointers
provide reachability 
across domains

1. hosts are assigned 
topology-independent 
“flat” identifiers

0x3BAC8



• Economic relationships: peer, provider/customer
• Isolation: routing contained within hierarchy

hierarchy #1 hierarchy #2 hierarchy #3

peer link

Internet policies today

• Economic relationships: peer, provider/customer
• Isolation: routing contained within hierarchy

Prefer customer 
over peer routes

Do not export provider
routes to peers

Source Destination



Isolation

Isolation property: traffic between two hosts trave rses no 
higher than their lowest common provider in the ISP  hierarchy

Joining
host

Internal
Successor

External
Successor

External
Successor

Source Destination



B C

Policy support

Peering link

• Peering
• Provider-customer
• Backup

Traffic respects peering, backup, and 
provider-customer relationships

Mechanism:
Convert peering
relationships to 
Virtual ASes

Source Destination

A

Source Destination

VirtAS

A

CB

Goal: prefer peer
route over 

provider route



Evaluation

• Distributed packet-level simulations
– Deployed on cluster across 62 machines, 

scaled to 300 million hosts
– Inferred Internet topology from 

Routeviews, Rocketfuel, CAIDA skitter 
traces

• Implementation
– Ran on Planetlab as overlay, covering 82 

ASes
– Configured inter-ISP policies from 

Routeviews traces

• Metrics: stretch, control overhead



Internet-scale simulations

• Join overhead <300 msgs, stretch < 1.4

• Root-server lookups inflate latency from 
54ms to 134ms, Flat IDs has no penalty
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