
Lecture 6:
Securing Distributed and Networked

Systems

CS 598: Network Security

Matthew Caesar

March 12, 2013

1

Today: Distributed Internet
Services

• Previous cycle: how to build Internet
services that run at a single location

• However, some modern services are
built across many locations

– Content distributed over the wide area,
multiple sites

– Need techniques to coordinate operations
of distributed software running in the wide
area

• Today: Overlay networks, DHTs 2

Overlay networks: Motivations

• Protocol changes in the network happen very
slowly

• Why?
– Internet is shared infrastructure; need to achieve

consensus

– Many proposals require to change a large number
of routers (e.g. IP Multicast, QoS); otherwise end-
users won’t benefit

• Proposed changes that haven’t happened yet
on large scale:
– More addresses (IPv6, 1991)

– Security (IPSEC, 1993); Multicast (IP multicast,
1990)

Overlay networks: Motivations

• Also, “one size does not fit all”

• Applications need different levels of

– Reliability

– Performance (latency

– Security

– Access control (e.g., who is allowed to join
a multicast group)

Overlay networks: Goals

• Make it easy to deploy new
functionalities in the network �

Accelerate the pace of innovation

• Allow users to customize their service

Solution

• Build a computer network on top of another
network
– Individual hosts autonomously form a “virtual”

network on top of IP

– Virtual links correspond to inter-host connections
(e.g., TCP sessions)

Example:
Resilient Overlay Networks

• Premise: by building an application-layer overlay
network, can increase performance and reliability of
routing

• Install N computers at different Internet locations

• Each computer acts like an overlay network router
– Between each overlay router is an IP tunnel (logical link)

– Logical overlay topology is all-to-all (N2 total links)

• Run a link-state routing algorithm over the overlay
topology
– Computers measure each logical link in real time for packet

loss rate, throughput, latency � these define link costs

– Route overlay traffic based on measured characteristics

Motivating example:
a congested network

R

R
R

R

R

R

A B

C

Solution: an “overlay” network

R

R
R

R

R

R

A B

C
Establish TCP

sessions (“overlay
links”) between hosts

A B

C
Loss=1%

Loss=2%

Loss=25%

Path taken by
TCP sessions

Machines
remember overlay

topology, probe
links, advertise

link quality

Benefits of overlay networks

• Performance:

– Difficult to provide QoS at network-layer due to
deployment hurdles, lack of incentives,
application-specific requirements

– Overlays can probe faster, propagate more routes

• Flexibility:

– Difficult to deploy new functions at IP layer

– Can perform multicast, anycast, QoS, security, etc

New problem: scalability

A B

C

Outdegree=2
8

Problems:
Number of links increases with O(n^2)

Link-state overhead increases with O(n^3)!

Alternative:
replace full-mesh with logical ring

A B

C

Problem:
Stretch increases with O(n)

Still requires O(n) state per node D

E

F

Alternative:
replace full-mesh with ring

Problem:
Stretch: increases with O(n)
State: still requires O(n) state per node

Improvement:
keep some long distance pointers

Improvement:
Stretch: reduces to O(lg n)
State: reduces to O(lg n)

Scaling overlay networks with
Distributed Hash Tables (DHTs)

• Assign each host a numeric identifier
– Randomly chosen, hash of node name, public key, etc

• Keep pointers (fingers) to other nodes
– Goal: maintain pointers so that you can reach any

destination in few overlay hops
– Choosing pointers smartly can give low delay, while

retaining low state

• Can also store objects
– Insert objects by “consistently” hashing onto id space

• Forward by making progress in id space

• General concept: distributed data structures

Different kinds of DHTs

• Different topologies give different bounds on stretch (delay
penalty)/state, different stability under churn, etc. Examples:

• Chord
– Pointers to immediate successor on ring, nodes spaced 2^k around

ring
– Forward to numerically closest node without overshooting

• Pastry
– Pointers to nodes sharing varying prefix lengths with local node,

plus pointer to immediate successor
– Forward to numerically closest node

• Others: Tapestry (like Pastry, but no successor pointers),
Kademlia (like Pastry but pointers to varying XOR distances),
CAN (like Chord, but torus namespace instead of ring)

The Chord DHT

“Fingers” maintained
for performance

Each node assigned
numeric identifier from

circular id-space

“Successors”
maintained for
correctness 504504+1

504+2

504+4

504+8

504+16

504+3

Chord Example: Forwarding a lookup

dest=802
000999

106

802

Cuts namespace-distance in half per
hop
+

You can divide any integer N in half at
most log(N) times

= logarithmic stretch

Chord Example: Joining a new node

000999

406

1. Joining node must be
aware of a “bootstrap” node
in DHT. Joining node sends

join request through
bootstrap node towards the

joining node’s ID
Join(406)

798

2. Bootstrap forwards
message towards joining

node’s ID, causing
message to resolve to
joining node’s future

successor

410 398

3. Successor informs
predecessor of its new

successor, adds
joining node as new

predecessor

Chord: Improving robustness

• To improve robustness, each node can
maintain more than one successor

– E.g., maintain the K>1 successors immediately
adjacent to the node

• In the notify() message, node A can send its
k-1 successors to its predecessor B

• Upon receiving the notify() message, B can
update its successor list by concatenating the
successor list received from A with A itself

Chord: Discussion

• Query can be implemented
– Iteratively

– Recursively

• Performance: routing in the overlay network
can be more expensive than routing in the
underlying network
– Because usually no correlation between node ids

and their locality; a query can repeatedly jump
from Europe to North America, though both the
initiator and the node that store them are in
Europe!

– Solutions: can maintain multiple copies of each
entry in their finger table, choose closest in terms
of network distance

The Pastry DHT
1320’s pointer table (base=4, digits=4)

Increasing digit ���� In
creasin

g
p

refix
len

g
th

 �� ��

1*: 2*: 3*: 0*:
11*: 12*: 13*:

131*: 132*: 133*:
10*:
130*:

1321: 1322: 1323: 1320:
1320

Pointers to neighbors that
match my ID with varying
prefix lengths,with most
significant digit varied

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

Goal: fill each “pointer table”
entry with topologically-

nearby nodes (1320 points
to 2032 instead of 2211,

even though they both fit in
this position)

1322

My own ID matches, can
leave blank (next row
down will have more

specific match anyway)

No node fits
here, leave

blank

1310

2032 3233
1103 1221
1310 1333

0002
1023

1321 1323

1321

1323

The Pastry DHT

1320

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

1322

1310

1321

1323

dst=3122

1320’s pointer table (base=4, digits=4)
1*: 2*: 3*: 0*:
11*: 12*: 13*:

131*: 132*: 133*:
10*:
130*:

1321: 1322: 1323: 1320:

1103
1310
1321

2032 3233
1221

1333
1323

0002
1023 Forward to node in

table with identifier
sharing longest prefix

with destination

3233’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
321*: 322*: 323*:

30*:
320*:

3231: 3232: 3233: 3230:

3103
2130

3211
0002

3103’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
311*: 312*: 3122 313*:

30*:
310*:

3101: 3102: 3103: 3100:

2032
3211

0002

Fixes one digit per hop
+

logarithmic number of digits per hop
= logarithmic stretch

The Pastry DHT

1320

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

1322

1310

1321

1323

3231

3231’s pointer table (stored in join pkt)
1*: 1320 2*: 3*: 0*:

31*: 32*: 33*:
321*: 322*: 3221 323*:

30*:
320*:

3231: 3232: 3233: 3230:

3103
3211

2130 3122
3211

3233
3233

0002

Join (dst=3231)

1321’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:

11*: 12*: 13*:
131*: 132*: 133*:

10*:
130*:

1321: 1322: 1322 1323: 1320:
1310

2130 3122
1323
1333
1323

0002
1023

3122’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:

31*: 32*: 33*:
311*: 312*: 313*:

30*:
310*: 3103

3121: 3122: 3123: 3120:

3103
3211

2032
3211

0002
3211’s pointer table (base=4, digits=4)

1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
321*: 322*: 3221 323*:

30*:
320*:

3211: 3212: 3213: 3210:

3103
2032

3233

0002
3233’s pointer table (base=4, digits=4)

1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
321*: 322*: 3221 323*:

30*:
320*:

3231: 3232: 3233: 3230:

3103
3211

2032
3211

3233

0002

Content Addressable Network (CAN)

• Associate to each node and item a
unique id in a d-dimensional space

• Properties

– Routing table size O(d)

– Guarantees that a file is found in at most
d*n1/d steps, where n is the total number
of nodes

CAN Example:
Two dimensional space

• Space divided between
nodes

• All nodes cover the
entire space

• Each node covers either
a square or a
rectangular area of
ratios 1:2 or 2:1

• Example:
– Assume space size (8x8)

– Node n1:(1,2) first node
that joins

• Cover the entire space

CAN Example:
Two dimensional space

• Node n2:(4,2)
joins � space is

divided between
n1 and n2

CAN Example:
Two dimensional space

• Node n2:(4,2)
joins � space is

divided between
n1 and n2

CAN Example:
Two dimensional space

• Nodes n4:(5,5)
and n5:(6,6) join

CAN Example:
Two dimensional space

• Nodes:
– n1:(1,2)
– n2:(4,2)
– n3:(3,5)
– n4:(5,5)
– n5:(6,6)

• Items:
– f1(2,3)
– f2(5,1)
– f3:(2,1)
– f4(7,5)

CAN Example:
Two dimensional space

• Each item is
stored at the node
who owns the
mapping in its
space

CAN Example:
Two dimensional space

• Query example:

• Each node knows its
neighbors in the d-
space

• Forward query to the
neighbor that is
closest to the query
id

• Example: assume n1
queries f4

Preserving consistency

• What if a node fails?

– Solution: probe neighbors to make sure
alive, proactively replicate objects

• What if node joins in wrong position?

– Solution: nodes check to make sure they
are in the right order

– Two flavors: weak stabilization, and strong
stabilization

Chord Example: weak stabilization

000999

732

885

900
051

122

480

502

538
619

670

Check: if my successor’s
predecessor is a better match for

my successor

n.stablize():
x=successor.predecessor;
if (x in (n, successor))
successor=x

successor.notify(n)

Tricky case: zero position on
ring

Example where weak stabilization
fails

000999

480

720

891
619

670

885

900

051
122

301

n.stablize():
x=successor.predecessor;
if (x in (n, successor))

successor=x
successor.notify(n)

Comparison of DHT geometries

Geometry Algorithm

Ring Chord

Hypercube CAN

Tree Plaxton

Hybrid =
Tree + Ring

Tapestry, Pastry

XOR
d(id1, id2) = id1 XOR id2

Kademlia

Comparison of DHT algorithms

• Node degree: The number of neighbors per node
• Dilation: Length of longest path that any packet traverses in the

network
– Stretch: Ratio of longest path to shortest path through the underlying

topology

• Congestion: maximum number of paths that use the same link

Security issues

• Sybil attacks
– Malicious node pretends to be many nodes
– Can take over large fraction of ID space, files

• Eclipse attacks
– Malicious node intercepts join requests, replies

with its cohorts as joining node’s fingers

• Solutions:
– Perform several joins over diverse paths, PKI,

leverage social network relationships, audit by
sharing records with neighbors

Hashing in networked software

• Hash table: maps identifiers to keys
– Hash function used to transform key to index

(slot)
– To balance load, should ideally map each key to

different index

• Distributed hash tables
– Stores values (e.g., by mapping keys and values

to servers)
– Used in distributed storage, load balancing, peer-

to-peer, content distribution, multicast, anycast,
botnets, BitTorrent’s tracker, etc.

01

02

04

Background: hashing

00

hashes

03

01

02

04
05...

08

function

Ahmed

Yan

John

Viraj

keys

Example

• Example: Sum ASCII digits, mod number of bins

• Problem: failures cause large shifts

00

hashes

01

02
03
04
05

function

Yan

John

Ahmed

Viraj

keys

A H M E D

Y A N
89+65+78=232
232%9=7

J O H N
74+79+72+78=303
303%9=6

V I R A J
86+73+82+65+74=380
380%9=2

06
07
08

00

02

06
07

65+72+77+69+68=351
351%9=0 351%8=1

232%8=1

303%8=2

380%8=2

Ahmed

Yan

John

Viraj

04

05

06
07

01

02

Solution: Consistent Hashing

• Hashing function that reduces churn

• Addition or removal of one slot does not
significantly change mapping of keys to slots

• Good consistent hashing schemes change
mapping of K/N entries on single slot addition

– K: number of keys

– N: number of slots

• E.g., map keys and slots to positions on circle

– Assign keys to closest slot on circle

Solution: Consistent Hashing

• Slots have IDs selected randomly from [0,100]

• Hash keys onto same space, map key to closest bin

• Less churn on failure � more stable system

hashesfunction

Yan

John

Ahmed

Viraj

keys

Y A N
89+65+78=232
232%100=32

J O H N
74+79+72+78=303
303%100=3

V I R A J
86+73+82+65+74=380
380%100=80

A H M E D
65+72+77+69+68=351
351%100=51

04
08
26
27
35
41
47
65
70
81

Network layer DHTs

44

Postal Service

Scenario: Sending a Letter

3400 Walnut St.
Philadelphia, PA
19104

Address:

450 Lancaster Ave. 3400 Walnut St.

900 Spruce St.

Name: B

A B

Scenario: Address Allocation

450 Lancaster Ave. 3400 Walnut St.

19104

19105

19107
A B

3400 Walnut St.
Philadelphia, PA
19104

Address:
Name: B

Postal Service

Scenario: Access Control

3400 Walnut St.

900 Spruce St.

“Inspect mail to
3400 Walnut St.”

450 Lancaster Ave.

C

D

3400 Walnut St.
Philadelphia, PA
19104

Address: 900 Spruce St.
Philadelphia, PA
19104

Address:
Name: C

Name: C

How Routing Works Today

• Each node has an identity
• Goal: find path to destination

Send(msg,Q)

B

J

S

K

Q

F

V

X

A

Area 1

Area 2

Area 4

Area 3

Scaling Requires Aggregation

• Pick addresses that depend on location
• Aggregation provides excellent scaling properties
• Key is topology-dependent addressing!

B

J

S

K

Q

F

V

X

A

1.1 1.2

2.1
2.2

4.2

4.1

3.3
3.2

3.1

Topology-Dependent Addresses
Aren’t Always Possible

• Networks can’t use topology-dependent
addresses because topology changes so
rapidly

• Decades-long search for scalable
routing algorithms for ad hoc networks

Topology-Dependent Addresses
Aren’t Always Desirable

• Using topology-based addresses in the
Internet complicates access controls,
mobility, and multihoming

• Would like to embed persistent
identities into network-layer addresses

Can We Scale without Topology-
Dependent Addresses?

• Is it possible to scale without
aggregation?

• Distributed Hash Tables don’t solve this
problem

This Talk

• Will describe how to route scalably on
flat identifiers that applies to both:

• Wireless networks:

– Challenge is dynamics

• Wired networks:

– Challenge is scale, policies, and dynamics

Outline

• Routing on an abstract graph

– What state is maintained

– How to route using that state

– How to correctly maintain state

• Wireless sensornet implementation

• Evaluation for Internet routing

• Conclusions

J

K Q

F

V

A

S

Network
topology

X

State maintained at each node

A F J K Q S V X

J

K

F

1. Write down
sorted list of IDs

2. Build paths
between
neighbors in list

Virtual
topology

F

A

J

K
Q

V

S

X

J

K Q

F

V

A

S

Network
topology

X

How to forward packets

Virtual
topology

F

A

J

K
Q

V

S

X

Send(K,F)

Q

J

K

F

J

K Q

F

V

A

S

Network
topology

X

The stretch problem

Virtual
topology

F

A

J

K
Q

V

S

X

Send(J,V)

J F
A

X

V

Resulting path length:
10 hops

Shortest path length:
3 hops

J

K Q

F

V

A

S

Network
topology

X

Optimization: shortcutting

Virtual
topology

F

A

J

K
Q

V

S

X

Send(J,V)

Resulting path length:
4 hops

Shortest path length:
3 hops

J F
X

V

A

X

A summary so far…

• The algorithm has two parts

– Route linearly around the ring

– Shortcut when possible

• Up next, the technical details…

Joining a new node

J

K Q

F

V

X

A

B

Network
topology

S

B

K

J
F

Join(B)

F

A

J

K
Q

V

S

X

Virtual
topology

{A,F,J}

B

How to maintain state

J

K Q

F

V

X

A

Network
topology

S

J
F

F

A

J

K
Q

V

S

X

Virtual
topology Goal #2:

Ensure each pointer path points to
correct global successor/predecessor

Goal #1:
Ensure each pointer path is
properly maintained

Path maintenance

• Nodes maintain (endpoint ID, next hop) pairs per-path
• Local fault detection, teardowns remove path state
• Local repair sometimes possible

J PX SA F

(id F,
nh X)

(id F,
nh P)

(id F,
nh A)

(id F,
nh S)

(id F,
nh F)

(id F,
nh F)

J F
Virtual link

Network
topology

Path maintenance

• Nodes maintain (endpoint ID, next hop) pairs per-path
• Local fault detection, teardowns remove path state
• Local repair sometimes possible

J PX SA F

(id F,
Nh X)

(id F,
nh P)

(id F,
nh A
nnh S)

(id F,
nh S)

(id F,
nh F)

(id F,
nh F)

H

(id F,
nh H
nnh S)

J F
Virtual link

Network
topology

Challenges of ring maintenance

• Need to ensure network-level events don’t cause ring
partitions, misconvergence

J

K Q

F

V

X

B

F

Q

V

B

K

X

J J

F

K
Q

V

X B

Ring maintenance

• Base mechanism:

– Discover node Z closest to
zero position, distributes
Z’s ID throughout partition

• Inductive mechanism:

– Set N’s successor to be the
closest among:

• N’s current successor

• N’s successor’s predecessor

• The zero node Z

Z
0

NS
S.pred

S

[1…k-2]

[k+1…0]

Ring maintenance: proof sketch

• Consider ring with nodes
{0…N}, assume routing has
converged

• Base case: N’s successor must
point to 0

• Inductive step: k-1 must point
to k
– if k-1 points to S in [k+1…0],

S would inform k-1 about S-1
� not converged

– if k-1 points to S in [1…k-2],
then k-1 would change to point
to zero node 0 � not converged

0
N

k k-1

Reachability property: If there is a network level path
between two nodes A and B, A can route to B via the ring

Outline

• Introduction

• Routing on an abstract graph

• Wireless sensornet implementation

– Motivation behind using flat IDs

– Methodology: sensornet implementation

– Results from deployment

• Evaluation for Internet routing

• Conclusions

Why flat IDs for wireless?

• Multihop wireless networks on the horizon

– Rooftop networks, sensornets, ad-hoc networks

• Flat IDs scale in dynamic networks

– No location service needed

– Flood-free maintenance reduces state, control traffic

• Developed and deployed prototype
implementation for wireless sensornets

– Extensions: failure detection, link-estimation

Methodology

• TinyOS implementation: Virtual Ring Routing (VRR)
– Deployment on testbed: 67 mica2dot motes (4KB

memory, 19.2kbps radio)

– Compared with Beacon Vector Routing (BVR), AODV, DSR

• Metrics: Delivery ratio, control overhead

Effect of node failure

• Both VRR and BVR perform well

• BVR’s performance degrades because of
coordinate instability and overhead to recover
from failures

50

60

70

80

90

100

110

0 5 10 15 20

Time (mins)

N
um

be
r

of
 n

od
es

0.8

0.85

0.9

0.95

1

D
el

iv
er

y
ra

tio

Number of nodes
BVR delivery ratio
VRR delivery ratio

Time [mins]

N
u

m
b

er
 o

f n
o

d
es

Transmission overhead

• Flat routing requires no scoped
flooding, which reduces transmission
overhead

Time [mins]

N
u

m
b

er
 o

f n
o

d
es

0.8

0.85

0.9

0.95

1

0 20 40 60 80

Messages per data packet

F
ra

ct
io

n
of

 p
ac

ke
ts

VRR
BVR

Effect of congestion

• Flat-routing resilient to congestion losses,
since identifiers topology-independent

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19

Time [mins]

S
en

d
ra

te
 [

pk
ts

/s
ec

]

0.92

0.94

0.96

0.98

1

D
el

iv
er

y
ra

tio

Packets/sec
VRR delivery ratio
BVR delivery ratio

Outline

• Introduction

• Routing on an abstract graph

• Wireless sensornet implementation

• Evaluation for Internet routing

– Motivation behind using flat IDs

– Extensions to support policies, improve scaling

– Performance evaluation on Internet-size graphs

• Conclusions

Why flat IDs for the Internet?

• Today’s Internet conflates addressing
with identity

• Flat IDs sidestep this problem
completely

– Provides network routing without any
mention of location

– Benefits: no need for name resolution
service, simpler configuration, simpler
access controls

Challenges of Internet routing

• Internet routing is very different from
wireless routing

– Challenges: policies, scaling

• Need new mechanisms to deal with
these challenges

– Policy-safe successor paths

– Locality-based pointer caching

Flat IDs for Internet routing

ISPISP

0xFA2910x3B57E
(joining
host)

0x3F6C0

0x3BAC8
0x3B57E

0x3F6C0

Successor list:
0x3F6C0

Pointer list:
0x3F6C0
0x3BAC8

Pointer cache:
0x3B57E

2. hosting routers
participate in protocol
on behalf of hosts

3. hosting routers maintain
pointers with source-routesto
attached hosts’
successors/fingers

4. intermediate
routers may cache
pointers

5. external pointers
provide reachability
across domains

1. hosts are assigned
topology-independent
“flat” identifiers

0x3BAC8

• Economic relationships: peer, provider/customer
• Isolation: routing contained within hierarchy

hierarchy #1 hierarchy #2 hierarchy #3

peer link

Internet policies today

• Economic relationships: peer, provider/customer
• Isolation: routing contained within hierarchy

Prefer customer
over peer routes

Do not export provider
routes to peers

Source Destination

Isolation

Isolation property: traffic between two hosts trave rses no
higher than their lowest common provider in the ISP hierarchy

Joining
host

Internal
Successor

External
Successor

External
Successor

Source Destination

B C

Policy support

Peering link

• Peering
• Provider-customer
• Backup

Traffic respects peering, backup, and
provider-customer relationships

Mechanism:
Convert peering
relationships to
Virtual ASes

Source Destination

A

Source Destination

VirtAS

A

CB

Goal: prefer peer
route over

provider route

Evaluation

• Distributed packet-level simulations
– Deployed on cluster across 62 machines,

scaled to 300 million hosts
– Inferred Internet topology from

Routeviews, Rocketfuel, CAIDA skitter
traces

• Implementation
– Ran on Planetlab as overlay, covering 82

ASes
– Configured inter-ISP policies from

Routeviews traces

• Metrics: stretch, control overhead

Internet-scale simulations

• Join overhead <300 msgs, stretch < 1.4

• Root-server lookups inflate latency from
54ms to 134ms, Flat IDs has no penalty

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 100 10000 1E+06 1E+08 1E+10

Number of hosts

S
tr

et
ch

With caching

No caching

0

50

100

150

200

250

1 100 10000 1E+06 1E+08 1E+10

Number of hosts

Jo
in

 o
ve

rh
ea

d
[m

sg
s] Peering

Multihoming
Singlehoming
Ephemeral

Full-scale

