
Signature Based Intrusion
Detection Systems
Philip Chan
CS 598 MCC
Spring 2013

Intrusion Detection Systems

Detect malicious
activities/attacks

● Hacking/ unauthorized access
● DOS attacks
● Virus/ Malware

Log events
● For Forensics and security auditing

Raise alarms
● Alert administrators
● Trigger defense mechanism if

available

React to attacks
● Disconnect attack channels
● Quarantine infected systems

Network IDSs

● Monitors and analyzes data packets on a
network to look for suspicious activity

● Large scale servers can monitor backbone
network links

● Small scale systems can monitor local
routers/switches

● Two major approches
○ Signature based (this lecture)
○ Anomaly detection based

Signature Based IDS

Advantages
● Simple to implement
● Lightweight
● Low false positive rate
● High true positive rate for

known attacks

Disadvantages
● Low detection rate for

zero day attacks

Signature Based IDS

Key Challenges
● Packet analysis is major bottleneck

○ How fast can signature string matching be done?
■ Exact string matching
■ Approximate string matching

SNORT

Example

......Perl.exe...... Rule Matching Match? No Dropped

Action

{TCP, 80, "Perl.
exe", ...}

Y
e
s

Incoming packet
Snort is
passive
wiretapping

Aho-Corasick Algorithm

● One pass multi-string matching
○ Can find all occurrences of any number of

keywords in a string, in ONE pass
● Constructs a finite state string pattern

machine
● Construction of state machine proportional to

sum of lengths of keywords
● FSM input: text string

Aho-Corasick Algorithm

● Naive approach
○ Assume keyword starts at byte 0 of payload,

traverse trie
○ If failed, start from byte 1 and traverse, etc
○ Worst case: L * h

■ L : length of payload
■ h : height of trie

Aho-Corasick Algorithm

● Aho-Corasick
○ Computes internal failure pointers and suffix pointers

■ Eliminates needs to backtrack and restart at top
of trie every time

○ Complexity: O(len(payload) + #pattern occurrences)
■ assuming FSM is precomputed offline

Aho-Corasick Algorithm

● Keywords: {test, telephone, phone,
elephant}

● Solid lines: Normal transitions
● Dotted lines: Failure transitions

Aho-Corasick Algorithm

http://www.youtube.com/watch?v=d24CyiU1JFk

Boyer-Moore Algorithm

● Fast one pass single-string matching
● Explicit character comparison at different

alignments of keywords in payload
○ Keywords preprocessed
○ Skip as many alignments as possible

● Compare strings from END of keywords
● Usually very fast in practice

○ skips a large portion of characters
○ compared to Aho-Corasick which goes through

whole string regardless

Boyer-Moore Algorithm

● Shifting through alignments
○ Start with last char in keyword
○ Match: continue

■ All match: word found in payload
○ Not match: does char exist in keyword?

■ Yes: shift to that char closest to current position
■ No: skip whole string

○ Continue

Boyer-Moore Algorithm

● Slide keywords along payload
● Match compare from END of keywords

○ Example

http://www.cs.utexas.edu/~moore/best-ideas/string-searching/fstrpos-example.html
http://www.cs.utexas.edu/~moore/best-ideas/string-searching/fstrpos-example.html

Boyer-Moore Algorithm

● Concurrent multi-keyword comparisons
○ Trunc all keywords to length of shortest keyword
○ Build trie in reverse (start from end of truncated

keywords)
■ so concurrent comparison only requires current

packet char to index into trie node
○ On success: continue down trie

■ If at leaf, check if truncated characters match
● For small number of strings, this generally performs better

than Aho-Corasick in implementation
○ On failure: shift by precomputed amount in failure

pointer

Performance

● In practice, Aho-Corasick and Boyer-Moore
provides little performance improvement
○ Very little packets match a large number of

strings/signatures
■ Naive method would generally also do well

○ More overhead due to code complexity
● However, large improvement for worse-cast

traces
○ May be crucial from hardware perspective

● A lot of research in effort to enhance Aho-
Corasick/Boyer-Moore to further improve
performance

Snort

Source: Nalneesh Gaur, Snort: Planning IDS for your enterprise

Snort

Source: Rafeeq Ur Rehman, Intrusion Detection Systems with Snort: Advanced
IDS Techniques with Snort, Apache, MySQL, PHP, and ACID

Snort - Detection Engine

Detection Engine Rule Pattern Searching

Boyer-Moore

Boyer-Moore works most
efficiently when the search pattern
consists of non-repeating sets of
unique bytes.
e.g. in x86, avoid including 0x90
(NOP) in pattern to avoid repeated
partial matches.

Snort - Rules

● written in single line in snort config file
● created by known signatures
● rule (type) scanning order

○ Alert -> pass -> log

Source: Nalneesh Gaur, Snort: Planning IDS for your enterprise

End

Questions?

