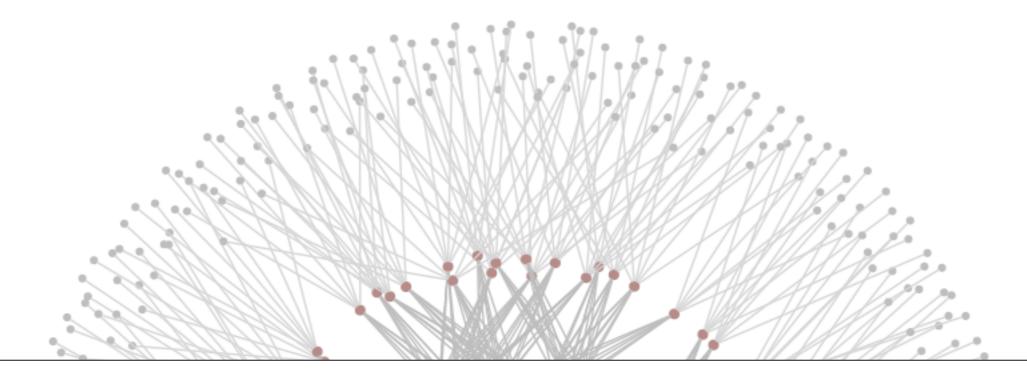
Computer Security: A Machine Learning Perspective

Phuong Cao University of Illinois at Urbana Champaign



Tuesday, April 30, 13

Overview of Machine Learning

Supervised Learning Framework

- Example: Malicious websites detection
- Attack againts supervised learning

Unsupervised Learning Framework

- Univariate Event Detection
- **Future Work**

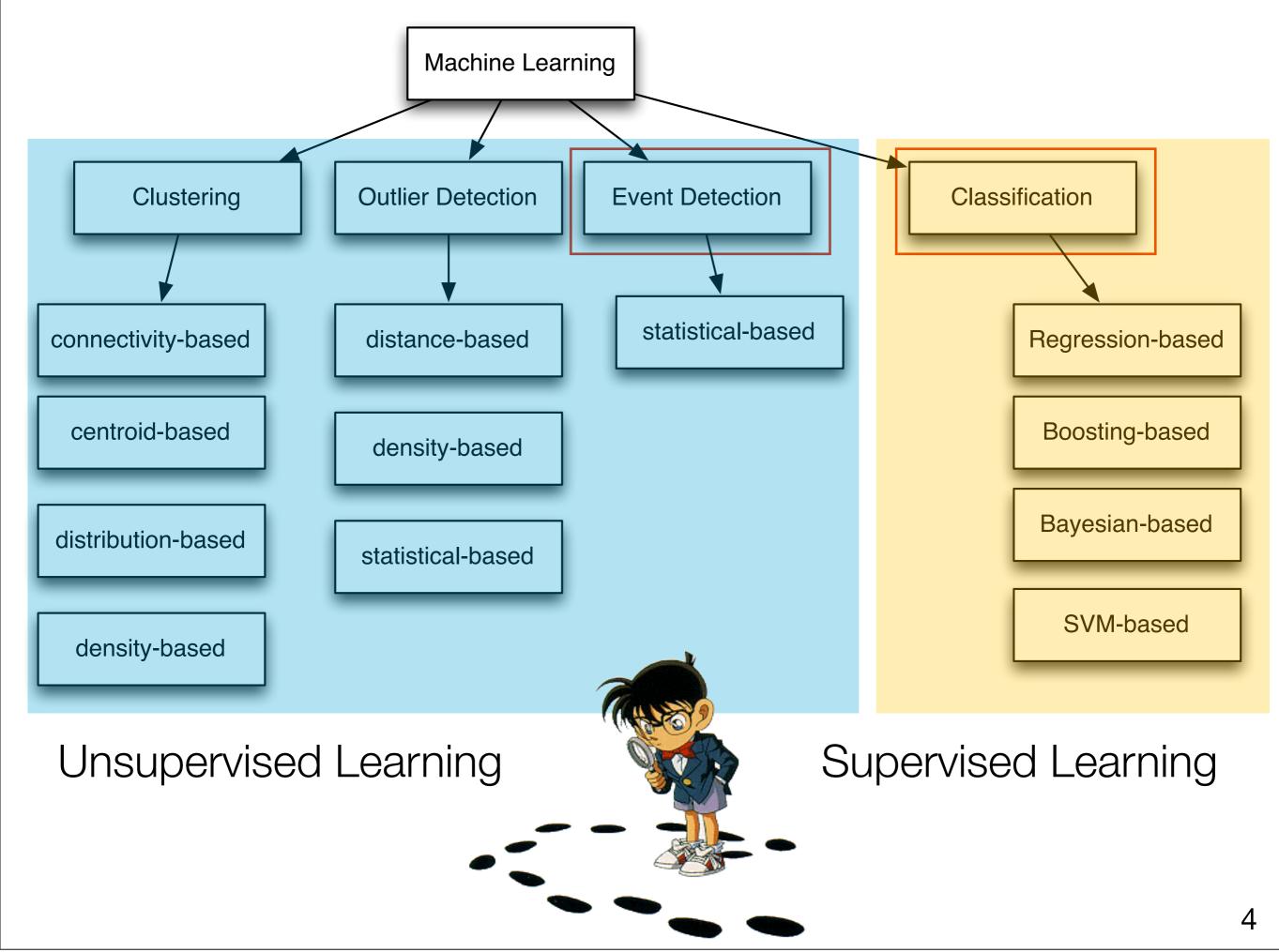
What is Machine Learning?

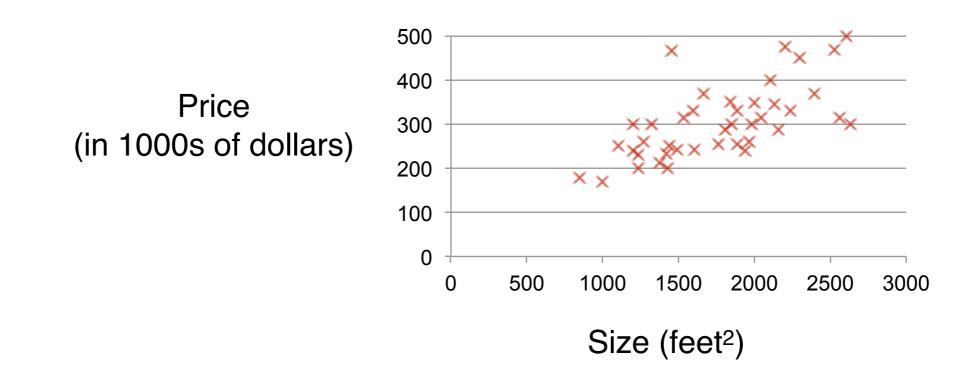
"The science of getting computers to act without being explicitly programmed"

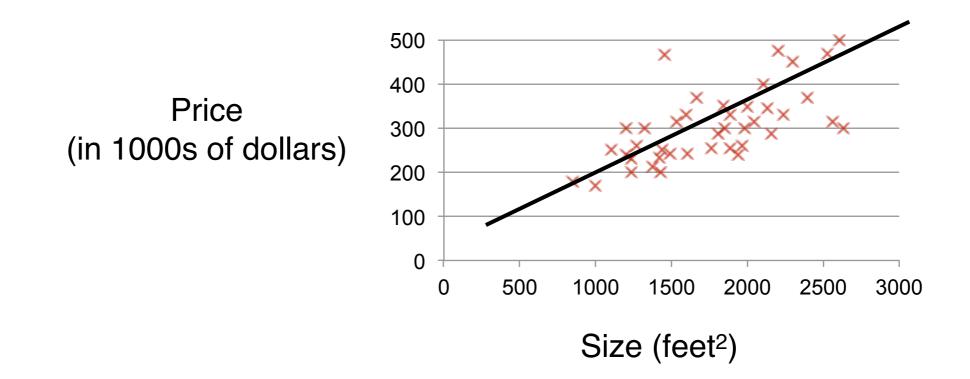
Andrew Ng, Associate Professor at Stanford.

Examples

Malicious URLs detection, malware classification, fraud detection, terrorist identification



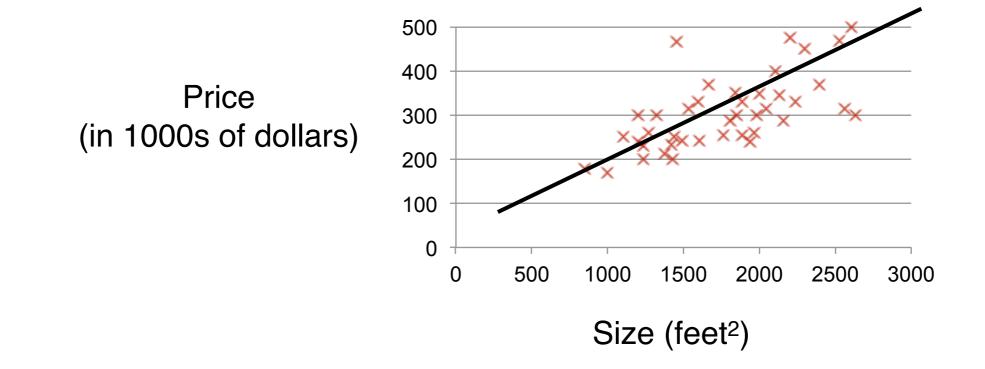




Infers a model from supervised (labeled) training data [Ng11]

Input: labeled data

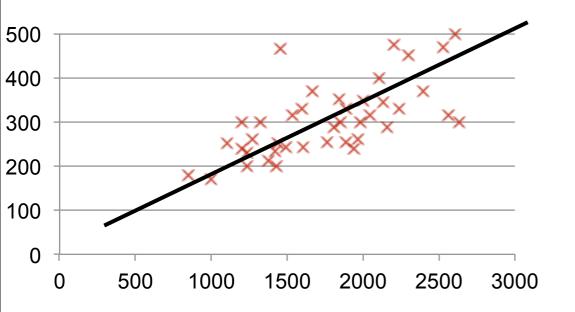
Output: function (linear/non-linear or probabilistic based)



Supervised Learning Model [Ng11]

Cost

Goal



Hypothesis
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

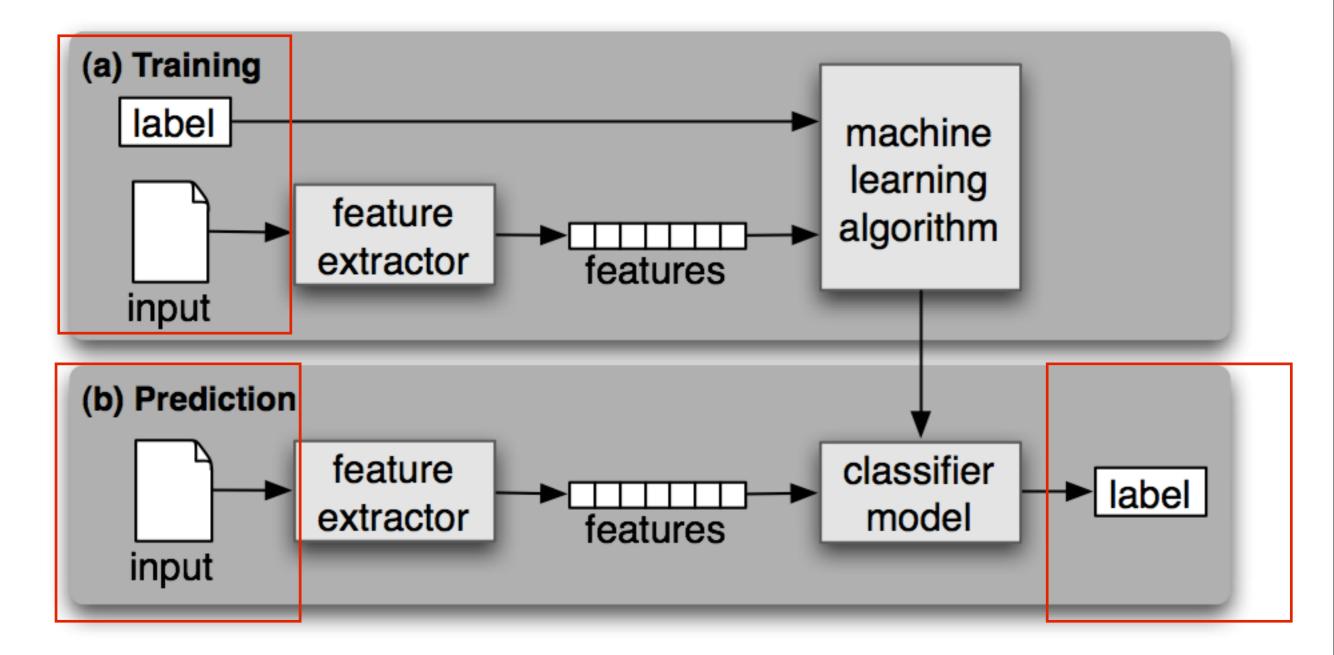
Parameters θ_0, θ_1

- 1. Propose a hypothesis
- 2. Define cost function

- $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_\theta(x^{(i)}) y^{(i)} \right)^2$
 - $\underset{\theta_0,\theta_1}{\text{minimize }} J(\theta_0,\theta_1)$

3. Minimize cost function

Supervised Learning Framework [Bird09]



http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html

Example: Malicious URLs [Ma08]

Problem definition

Given a website w and a set of labeled malicious/benign websites, identify whether w is malicious or not?

Training data

URLs and label of malicious/benign websites

White and grey list: Alexa top 1M sites

Blacklist: malicious domains used by botnets, phishing emails, etc.

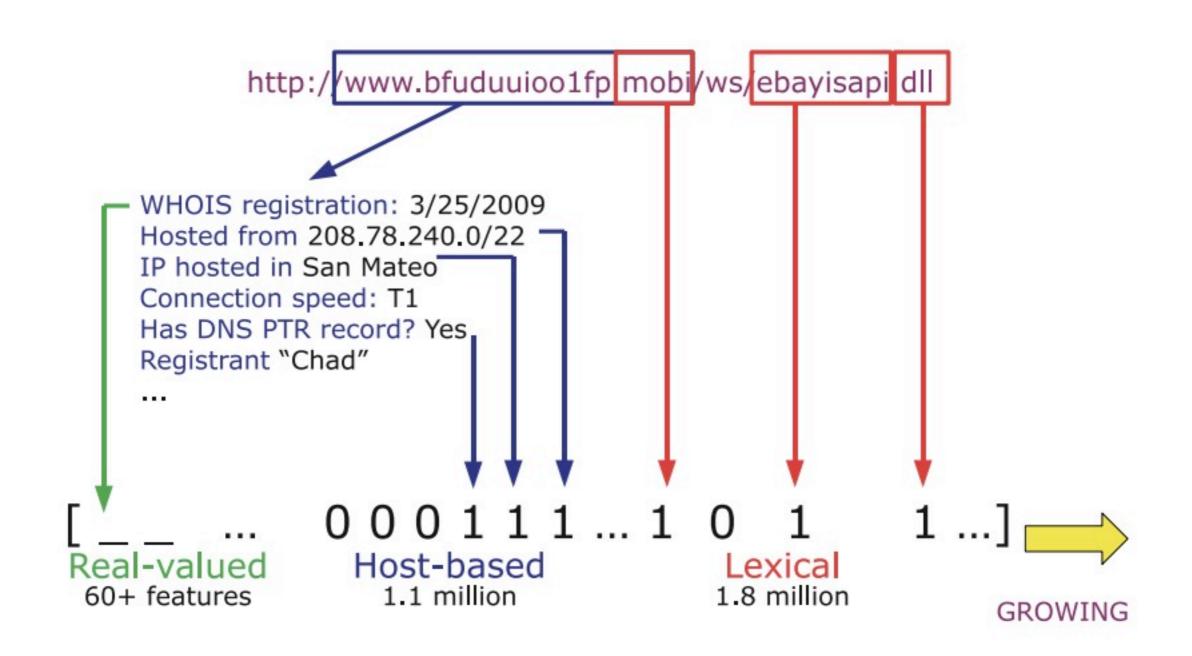
Feature Extraction from URLs

Feature Extraction from URLs

http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll

Feature Extraction from URLs

http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll



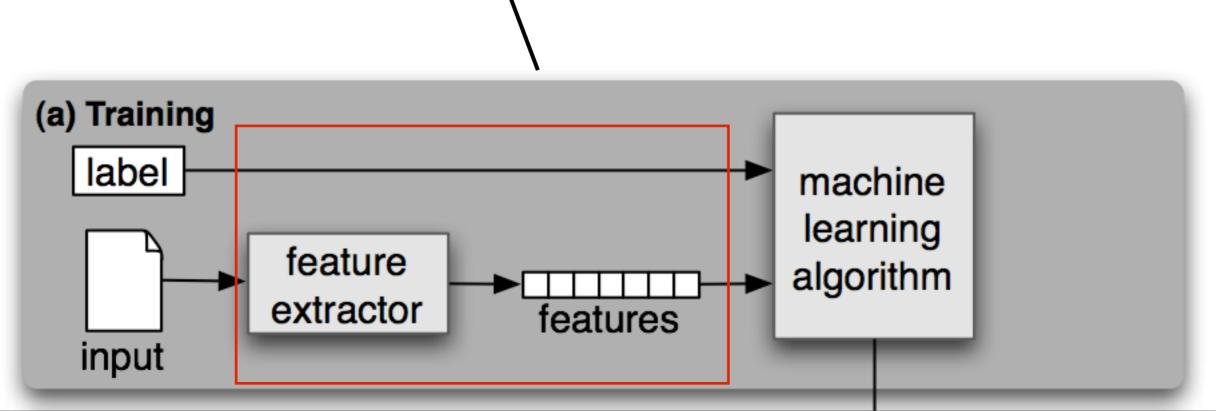
Feature Extraction from webpage

Website structures (DOM Tree)

Types of advertisings

Types of in/out links

Scale-invariant feature transform (SIFT) of images



Classification Methods

Standard Classifiers: SVM, Naive Bayes, Logistic Regression [Romano07, Hosmer04, McCallum98]

Results may vary!

SVM, Logistic Regression: Over-fitting of training data.

Naive Bayes: Depends on independence assumption

Boosting: AdaBoost, Gradient Boosted Decision Tree [Collins02]

Key idea: combine multiple weak classifier for a strong classifier

Advantages:

High classification accuracy

Noise-tolerant

Classification Methods in Practices

Example: Google still uses rule-based approach for search ranking.

Quora Q Search

Edmond Lau, Ex-Google Search Quality Engineer

331 votes by Anne K. Halsall, Adam D'Angelo, Mark Cao, (more)

From what I gathered while I was there, Amit Singhal, who heads Google's core ranking team, has a philosophical bias against using machine learning in search ranking. My understanding for the two main reasons behind this philosophy is:

- In a machine learning system, it's hard to explain and ascertain why a
 particular search result ranks more highly than another result for a given query.
 The explainability of a certain decision can be fairly elusive; most machine
 learning algorithms tend to be black boxes that at best expose weights and
 models that can only paint a coarse picture of why a certain decision was
 made.
- 2. Even in situations where someone succeeds in identifying the signals that factored into why one result was ranked more highly than other, it's difficult to directly tweak a machine learning-based system to boost the importance of certain signals over others in isolated contexts. The signals and features that feed into a machine learning system tend to only indirectly affect the output through layers of weights, and this lack of direct control means that even if a human can explain why one web page is better than another for a given query, it can be difficult to embed that human intuition into a system based on machine learning.

Rule-based scoring metrics, while still complex, provide a greater opportunity for engineers to directly tweak weights in specific situations. From Google's

Classification Methods in Practices

In practice:

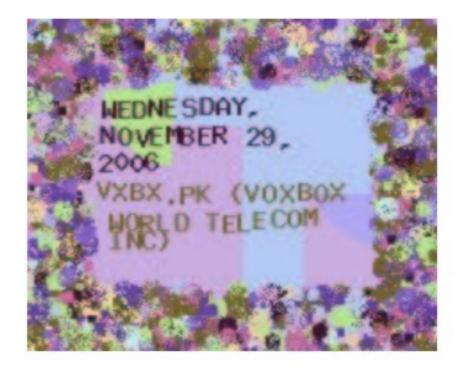
Prefers simple and interpretable models, e.g., decision trees, Bayes network

A ML application must scale

Data is the first class citizen

How would you attack a spam filter?

How would you attack a spam filter?



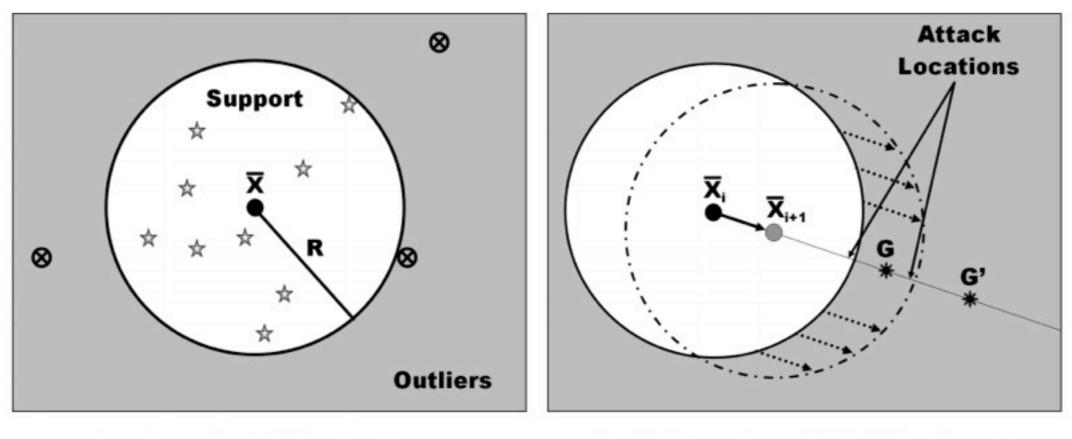
How would you attack a spam filter?

Adversarial spam image designed to defeat OCR text extraction [Chan06]

Security Violations [Barreno06]

Integrity: Intrusion points classified as normal (false negatives)

Availability: Enough classification errors that learner becomes unusable



(a) Hypersphere Outlier Detection

Supervised Learning Summary

Process

Collect data labels, Extract features, Evaluate classifiers

Problems

Over-fitting, sensitive to noise, susceptible to security violation attacks.

Overview of Machine Learning

Supervised Learning Framework

- Example: Malicious websites detection
- Attack againts supervised learning

Unsupervised Learning Framework

Event Detection in Spatial stream

Future Work

Event Detection

Identify events from spatio-temporal data stream

Input: spatio-temporal data stream

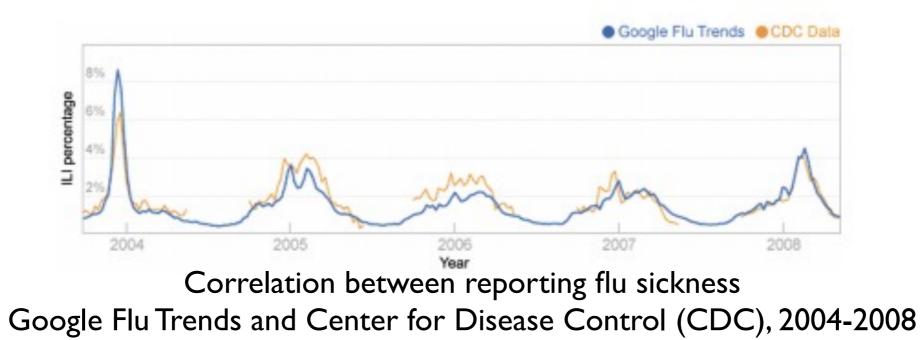
Output: spatio-temporal location of events

Event Detection

Identify events from spatio-temporal data stream

Input: spatio-temporal data stream

Output: spatio-temporal location of events

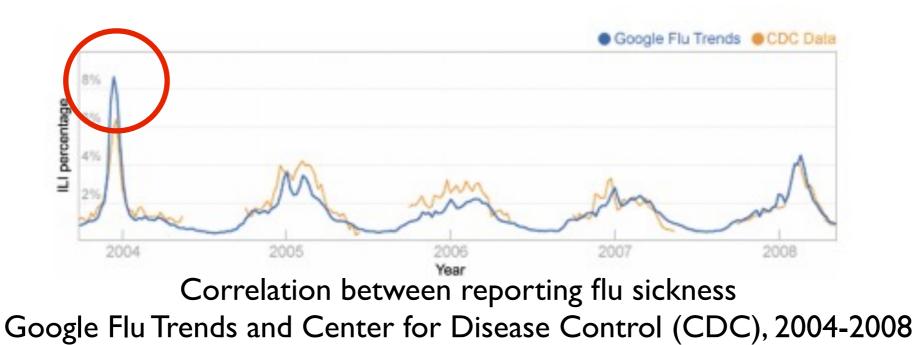


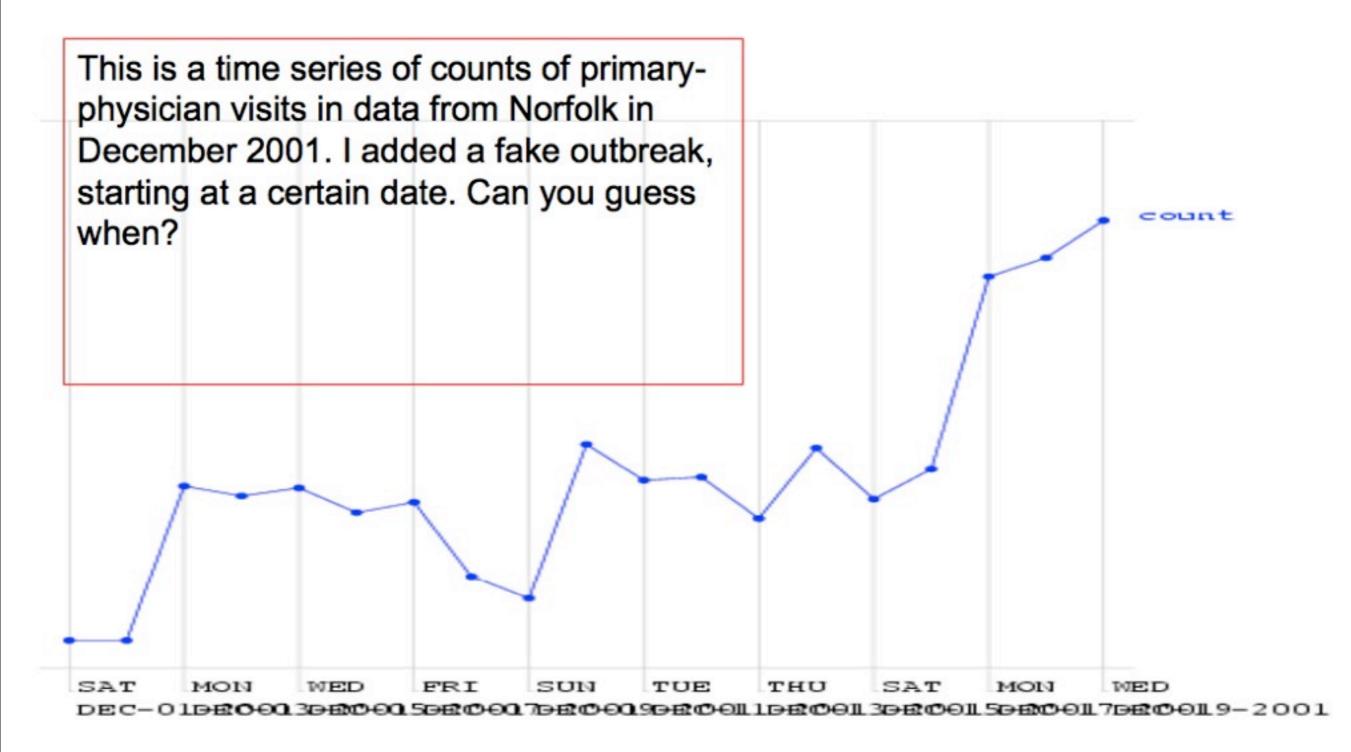
Event Detection

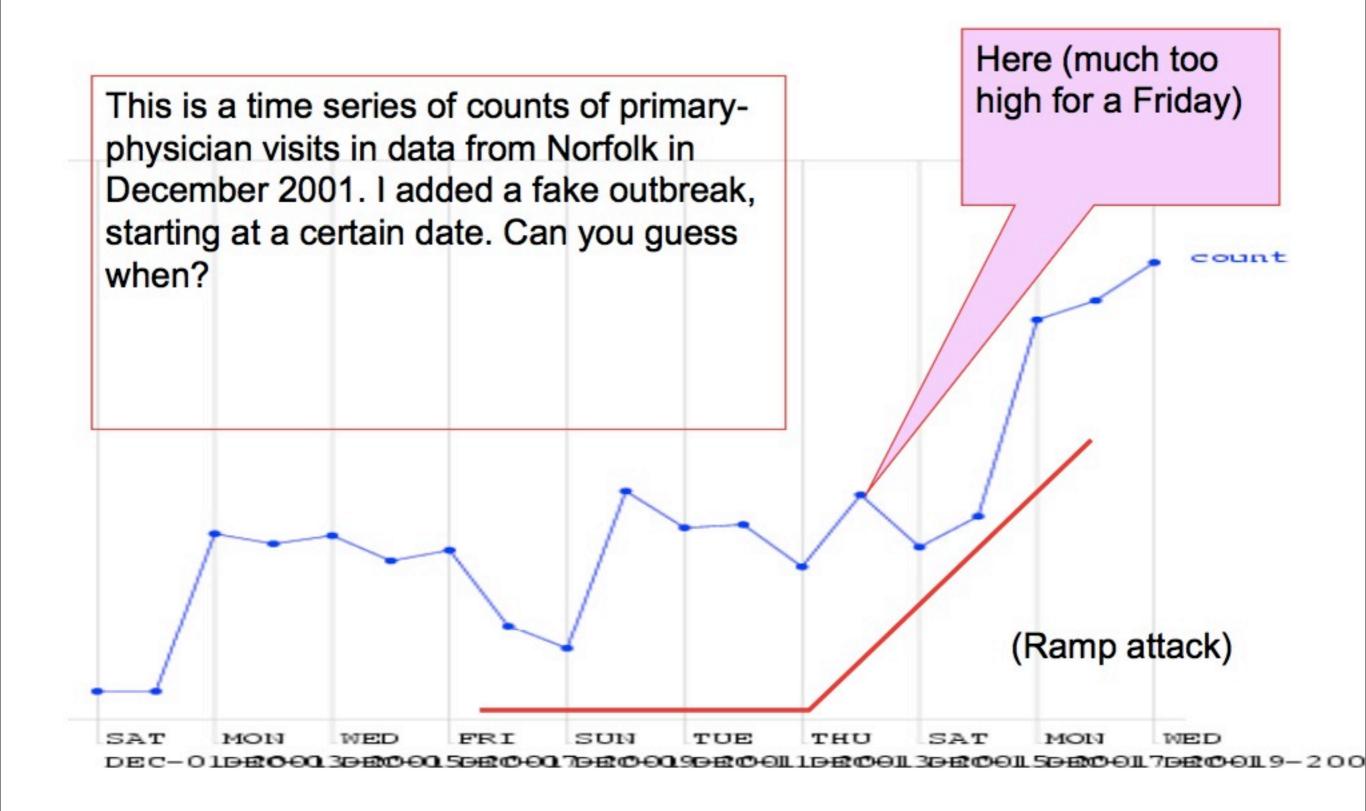
Identify events from spatio-temporal data stream

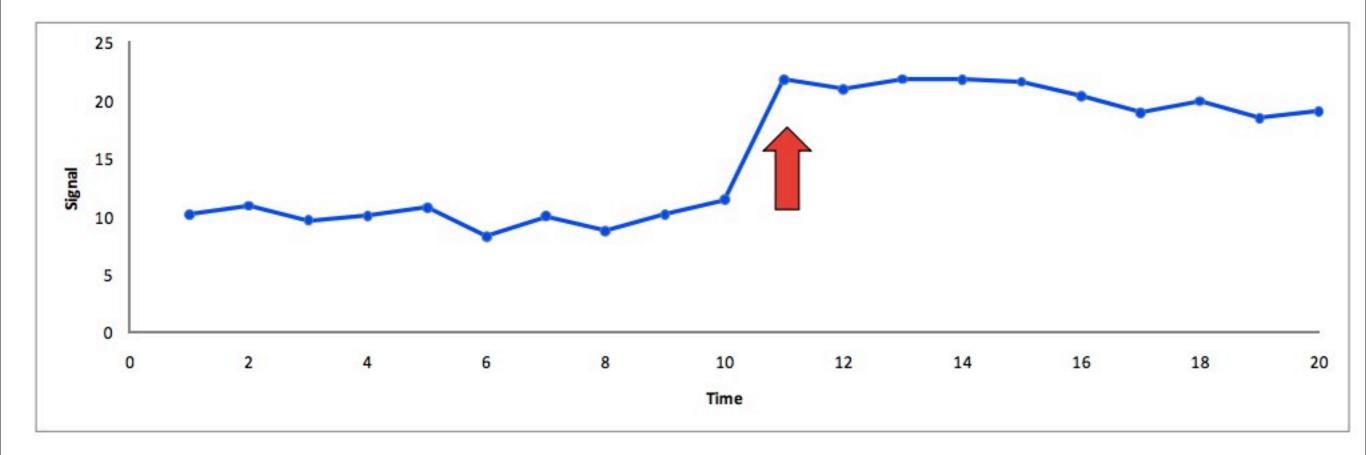
Input: spatio-temporal data stream

Output: spatio-temporal location of events

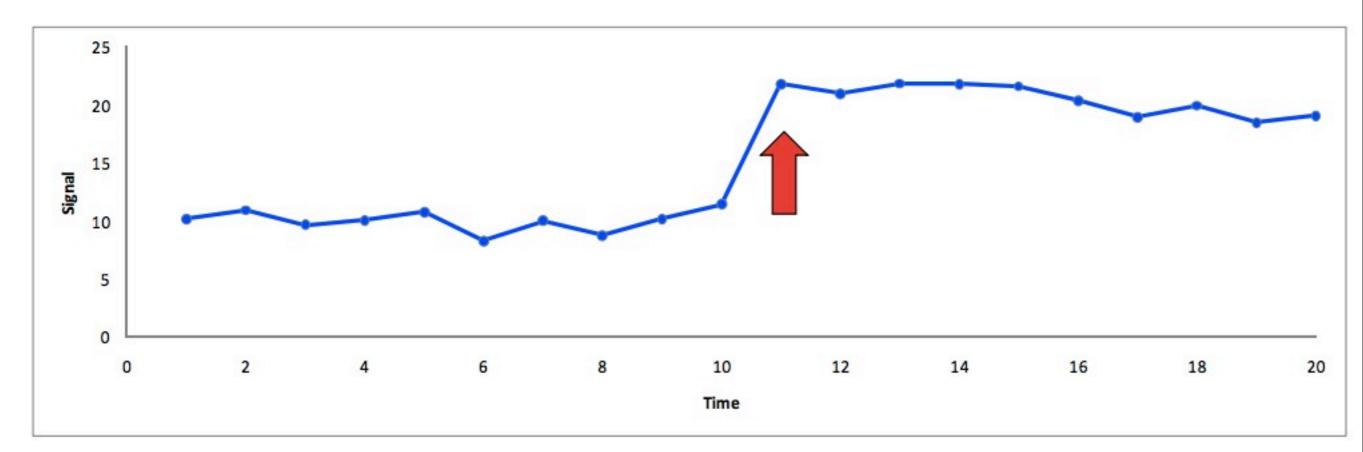








When does an event happen?

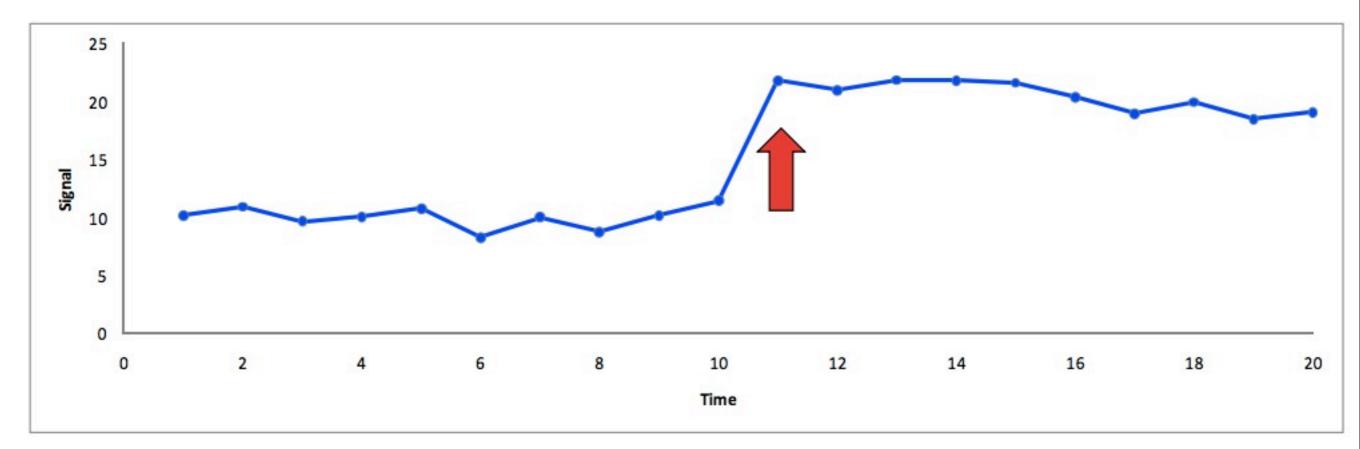


Event Detection Framework

- 1. Learn model to predict expected signal value
- 2. Measure difference between actual and expected

alarm

3. Define alert threshold



Event Detection Techniques

- 1. Control Charts [Shewhart31]
- 2. Moving Average [Roberts59]
- 3. CUSUM [Page54]
- 4. Regression [Montgomery01]

Univariate Event Detection: Moving Average

Let W be the window size A moving average window predicts the following:

$$X_{t+1} = \frac{1}{W} (X_t + X_{t-1} + \dots + X_{t-W-1})$$

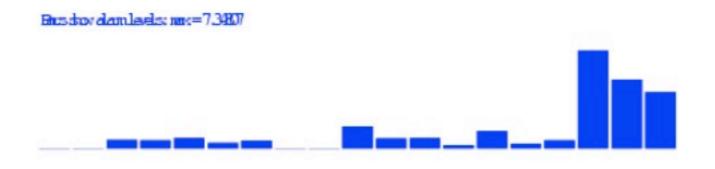
Setting the alarm value:

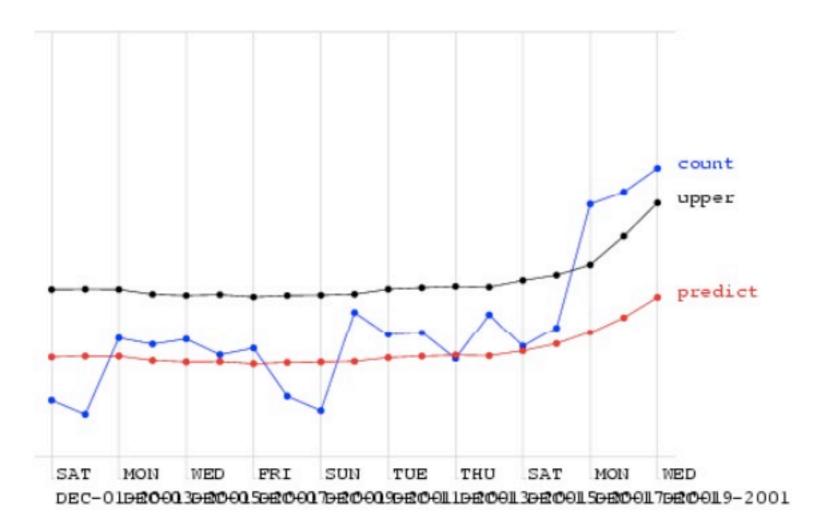
Fit a Gaussian to the W observations within the window ie. estimate $\hat{\mu}$ and $\hat{\sigma}$

Calculate the alarm level as before

Alarm level =
$$\Phi\left(\frac{\max(0, X_i - \hat{\mu})}{\hat{\sigma}}\right)$$
 where $\Phi = \text{CDF}$ for N(0,1)

Univariate Event Detection: Moving Average





Problems?

- Data often contains trends
 - Seasonal effect
 - Holiday effect
 - Day-night effect
 - Day-of-week effect

Regression methods address this problem.

Univariate Event Detection: Regression

Regression example to model seasonal effects and Monday effects:

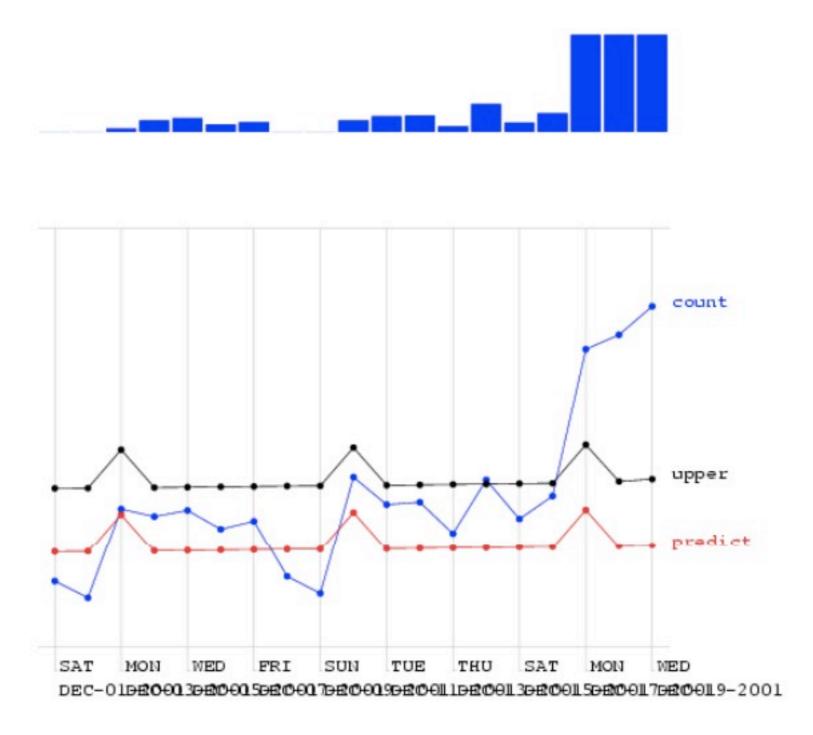
 $Y_i = \beta_0 + \beta_1 (HoursOfDaylight_i) + \beta_2 (IsMonday_i) + \varepsilon_i$

Could be defined as:Boolean feature – adds
a "bump" to the value
of Y if it is a MondayNormally distributed
noise with mean 0,
known variance σ^2

Regression learns the β parameters from data to minimize the residual sum of squares

Univariate Event Detection: Regression

Regression applied to Norfolk data using *HoursOfDaylight* and *IsMonday* terms



Event Detection Summary

Process

Learn data generation model, predict expected signal value, set alert threshold.

Problems

Complex data structures support, e.g., multivariate features, spatio-temporal data, graph data, etc.

Conclusion

Data-driven security is an exciting research direction, given a large amount of operational data available

Challenges

Robust learning under attack

Tolerant with noises from attackers

Over-fitting

Predicting future attacks

Online learning

Learn as stream of data coming in

Unsupervised learning

Learn with no expert guidance