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What is Machine Learning?
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“The science of getting computers to act without being
explicitly programmed”

Andrew Ng, Associate Professor at Stanford.

Examples

Malicious URLSs detection, malware classification, fraud
detection, terrorist identification
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Machine Learning
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Supervised Learning Overview
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Supervised Learning Overview

nfers a model from supervised (labeled) training data
Ng11]

Input: labeled data

Output: function (linear/non-linear or probabilistic
based)
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Suervised Learning Model [Ng11]
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Supervised Learning Framework [Bird09]
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http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html
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Example: Malicious URLs [Ma08]

Problem definition

Given a website w and a set of labeled malicious/benign
websites, identify whether w is malicious or not?

Training data
URLs and label of malicious/benign websites
White and grey list: Alexa top 1M sites

Blacklist: malicious domains used by botnets,
phishing emails, etc.
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Feature Extraction from URLs

http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll



http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll
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Feature Extraction from URLs

http://www.bfuduuioo1fp.mobi/ws/ebayisapi.dll

http:/waw.bfuduuioolfp mob ws,lebayisapildll

/

WHOIS registration: 3/25/2009
Hosted from 208.78.240.0/22

IP hosted in San Mateo
Connection speed: T1
Has DNS PTR record? Yes
Registrant “"Chad”

Real-valued Host-based Lexical
60+ features 1.1 million 1.8 million GROWING
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Feature Extraction from webpage

Website structures (DOM Tree)
Types of advertisings
Types of in/out links

Scale-invariant feature transform (SIFT) of images

\

machine
learning

label
: f
. eature ENEEEEE algorithm
extractor .

10

Tuesday, April 30, 13



Classification Methods

Standard Classifiers: SVM, Naive Bayes, Logistic Regression
[Romano07, Hosmer04, McCallum98]

Results may vary!
SVM, Logistic Regression: Over-fitting of training data.

Naive Bayes: Depends on independence assumption

Boosting: AdaBoost, Gradient Boosted Decision Tree [Collins02]
Key idea: combine multiple weak classifier for a strong classifier
Advantages:

High classification accuracy

Noise-tolerant
11
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Classification Methods in Practices

Example: Google still uses rule-based approach for
search ranking.

Qaar~h
m Q cateiabich

u Edmond Lau, Ex-Google Search Quality Engineer ﬁ
« 331 votes by Anne K. Halsall, Adam D'Angelo, Mark Cao, (more)

From what | gathered while | was there, Amit Singhal, who heads Google's core
ranking team, has a philosophical bias against using machine learning in search
ranking. My understanding for the two main reasons behind this philosophy is:

1. In a machine learning system, it's hard to explain and ascertain why a
particular search result ranks more highly than another result for a given query.
The explainability of a certain decision can be fairly elusive; most machine
learning algorithms tend to be black boxes that at best expose weights and
models that can only paint a coarse picture of why a certain decision was
made.

2. Even in situations where someone succeeds in identifying the signals that
factored into why one result was ranked more highly than other, it's difficult to
directly tweak a machine learning-based system to boost the importance of
certain signals over others in isolated contexts. The signals and features that
feed into a machine learning system tend to only indirectly affect the output
through layers of weights, and this lack of direct control means that even if a
human can explain why one web page is better than another for a given query,
it can be difficult to embed that human intuition into a system based on
machine learning.

Rule-based scoring metrics, while still complex, provide a greater opportunity for
engineers to directly tweak weights in specific situations. From Google's
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Classification Methods in Practices

In practice:

Prefers simple and interpretable models, e.g., decision
trees, Bayes network

A ML application must scale

Data Is the first class citizen

13
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Supervised Learning Attacks
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Supervised Learning Attacks

How would you attack a spam filter?
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Supervised Learning Attacks

How would you attack a spam filter?
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Supervised Learning Attacks

How would you attack a spam filter?
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Adversarial spam image designed to
defeat OCR text extraction [ChanOo]
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Supervised Learning Attacks

Security Violations [BarrenoOo]

Integrity: Intrusion points classified as normal (false
negatives)

Availability: Enough classification errors that learner
becomes unusable

Attack
Locations

® G
~%_
Outliers
(a) Hypersphere Outlier Detection (b) Attack on a Hypersphere Outlier Detector
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Supervised Learning Summary

Process

Collect data labels, Extract features, Evaluate
classitiers

Problems

Over-fitting, sensitive to noise, susceptible to security
violation attacks.
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Event Detection

|dentity events from spatio-temporal data stream

Input: spatio-temporal data stream

Output: spatio-temporal location of events

18
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Event Detection

|dentity events from spatio-temporal data stream

Input: spatio-temporal data stream

Output: spatio-temporal location of events
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Correlation betweeﬁmreporting flu sickness
Google Flu Trends and Center for Disease Control (CDC), 2004-2008
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Event Detection

|dentity events from spatio-temporal data stream

Input: spatio-temporal data stream

Output: spatio-temporal location of events

Correlation betweeﬁerreporting flu sickness
Google Flu Trends and Center for Disease Control (CDC), 2004-2008
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Univariate Event Detection [Neill09]

‘This is a time series of counts of primary-
physician visits in data from Norfolk in
December 2001. | added a fake outbreak,

starting at a certain date. Can you guess
when? o |

- -
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Univariate Event Detection [Neill09]

Here (much too
This is a time series of counts of primary- high for a Friday)
physician visits in data from Norfolk in
December 2001. | added a fake outbreak,
starting at a certain date. Can you guess
when?

(Ramp attack)
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Univariate Event Detection [Neill09]

20

When does an event happen?
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Univariate Event Detection [Neill09]
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Event Detection Framework
1. Learn model to predict expected signal
value o
2. Measure difference between actual anad =)
expected
3. Define alert threshold
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Univariate Event Detection [Neill09]
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Event Detection Techniques
1. Control Charts [Shewhart31]
2. Moving Average [Roberts59]
3. CUSUM [Page54]

4, Regression [MontgomeryO1]
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Univariate Event Detection: Moving Average

Let W be the window size
A moving average window predicts the following:

1
KXo :W(X’ X e B A s o)

Setting the alarm value:

Fit a Gaussian to the W observations within the window ie. estimate & and &

Calculate the alarm level as before
max(0, X, — /1)
o

Alarmlevel = (I)( ) where ® = CDF for N(0,1)

24
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Univariate Event Detection: Moving Average
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Problems?

Data often contains trends
Seasonal effect
Holiday effect
Day-night effect

Day-of-week effect

Regression methods address this problem.

26
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Univariate Event Detection: Regression

Regression example to model seasonal effects and
Monday effects:

Y = [, + B, (HoursOfDaylight.) + [,(IsMonday,) + ¢,

" /N

Could be defined as: Boolean feature —adds = Normally distributed
. ( 27(num dayssince July31) 7« a "bump” to the value noise with mean 0,
e 365.25 ) of Y if it is a Monday known variance o2

Regression learns the B parameters from data to minimize the residual sum of
squares
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Univariate Event Detection: Regression

Regression applied to III
Norfolk data using B =
HoursOfDaylight and - - -
IsMonday terms
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Event Detection Summary

Process

Learn data generation model, predict expected signal
value, set alert threshold.

Problems

Complex data structures support, e.g., multivariate
features, spatio-temporal data, graph data, etc.

29
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Conclusion

Data-driven security is an exciting research direction, given a
large amount of operational data available

Challenges
Robust learning under attack
Tolerant with noises from attackers
Over-fitting
Predicting future attacks
Online learning
Learn as stream of data coming in
Unsupervised learning

Learn with no expert guidance

30
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