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hashing

• So, we must generate and exchange a key securely
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Quantum channel

Internet

Quantum channel
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Background Physics

Classical Waves



Polarization

Simplified wave: ~E field ‘pointing’ in an alternating directions like a
moving sine function.



Yes, this started out as a lowres gif



Polarization (cont.)

Exploiting polarization can useful:

We will see that you can also to encode information in polarization
states
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Beamsplitters

Earlier in lecture we’ve talked about ‘half-silvered mirrors’ or
beamsplitters



Beamsplitters (cont.)

By using the right combination of materials, a beamsplitter can
split on polarization state:

We call this a Polarizing BeamSplitter (PBS)



Background Physics

Quantum Mechanics
I think I can safely say that nobody understands quantum
mechanics.
–Richard Feynman



Quantum Mechanics

Quantum Mechanics has been used to explain many things



QM example - photon counting

• Consider a monochromatic light source, a beam splitter, and
two detectors
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QM example - double slit

http://www.toutestquantique.fr/#dualite

http://www.toutestquantique.fr/#dualite
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It is perfectly valid for a quantum particle (e.g photon) to
‘exist’ in more than one state at a time (until it is measured)
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At the quantum scale, it is impossible to predict the exact
outcome of certain events. Furthermore, certain quantities
are fundamentally unknowable.
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Entanglement - an example

Pauli Exclusion Principle

Two electrons cannot occupy the exact same state

• Consider two electrons in a helium atom, in the lowest energy
state (1s2, if you remember chemistry) with spin 0.

• This means that one e−is ↑ and the other is ↓
• If we look at one e−’s spin, we immediately know the other’s
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Entanglement - an example (cont.)

• We can make it such that the e−s are in a superposition of
spin states, each is equally likely to be ↑ or ↓

• Our rules say that if we measure the spin of one e−, we ‘force’
it to take a definite spin value

• The other e−must be in the opposite spin state
• Measuring one e−caused the other’s spin to be ‘defined’ - we
call these particles ‘spin-entangled electrons.’

• Note for completeness: This is NOT the only valid spin state
for two electrons in He, but a special state called the “spin
singlet.”
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• If we somehow rip an electron out of the atom w/o
‘measuring’ its spin, they will still be correlated

• As long as this state is preserved, there’s no dependence on
distance

• This is called non-locality
• Einstein called it “spooky action at a distance”
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• So no ‘faster-than-light’ information transfer is present
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Making entangled photons

BBO: Spontaneous parametric down-conversion converts one
photon into two photons



Making entangled photons - for real real
Experimentally, this “spooky action” does occur at a distance.
In 1982, researchers demonstrated entanglement between photons
13m apart

In 2012, 144km
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QM - wrapup

From Gisin et al., Quantum Cryptography (2002):
• One cannot take a measurement without perturbing the
system.

• One cannot determine simultaneously the position and the
momentum of a particle with arbitrarily high accuracy.

• One cannot simultaneously measure the polarization of a
photon in the vertical-horizontal basis and simultaneously in
the diagonal basis.

• One cannot draw pictures of individual quantum processes.
(You can only measure observables)

• One cannot duplicate an unknown quantum state.



QM - wrapup

From Gisin et al., Quantum Cryptography (2002):
• One cannot take a measurement without perturbing the
system.

• One cannot determine simultaneously the position and the
momentum of a particle with arbitrarily high accuracy.

• One cannot simultaneously measure the polarization of a
photon in the vertical-horizontal basis and simultaneously in
the diagonal basis.

• One cannot draw pictures of individual quantum processes.
(You can only measure observables)

• One cannot duplicate an unknown quantum state.



QM - wrapup

From Gisin et al., Quantum Cryptography (2002):
• One cannot take a measurement without perturbing the
system.

• One cannot determine simultaneously the position and the
momentum of a particle with arbitrarily high accuracy.

• One cannot simultaneously measure the polarization of a
photon in the vertical-horizontal basis and simultaneously in
the diagonal basis.

• One cannot draw pictures of individual quantum processes.
(You can only measure observables)

• One cannot duplicate an unknown quantum state.



QM - wrapup

From Gisin et al., Quantum Cryptography (2002):
• One cannot take a measurement without perturbing the
system.

• One cannot determine simultaneously the position and the
momentum of a particle with arbitrarily high accuracy.

• One cannot simultaneously measure the polarization of a
photon in the vertical-horizontal basis and simultaneously in
the diagonal basis.

• One cannot draw pictures of individual quantum processes.
(You can only measure observables)

• One cannot duplicate an unknown quantum state.



QM - wrapup

From Gisin et al., Quantum Cryptography (2002):
• One cannot take a measurement without perturbing the
system.

• One cannot determine simultaneously the position and the
momentum of a particle with arbitrarily high accuracy.

• One cannot simultaneously measure the polarization of a
photon in the vertical-horizontal basis and simultaneously in
the diagonal basis.

• One cannot draw pictures of individual quantum processes.
(You can only measure observables)

• One cannot duplicate an unknown quantum state.



Quantum Cryptography
(or Quantum Key Distribution)



Goal

Exchange a key



Example: BB84
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Polarization

Many kinds of polarization:
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• A basis:
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• From this basis and superposition, you can get all other states
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Superposition

We’ll focus on these.
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Eavesdropping

Basis is known, so Eve can measure and regenerate:

fiber

Bob

generator

Alice

Eve

0

1

HV



Choose bases randomly

Message 1 1 0 1
Basis HV DA DA HV

Polarization



Measurement with wrong basis

0

1

HV

p = 0.5

p = 0.5

It comes from superposition:



Measurement with wrong basis

0

1

HV

p = 0.5

p = 0.5

It comes from superposition:



Measurement with wrong basis

0

1

DA

p = 0.5

p = 0.5

Superposition, too:



Measurement with wrong basis

0

1

DA

p = 0.5

p = 0.5

Superposition, too:



Measurement with wrong basis

Using the wrong basis implies:
• measurement unreliability
• quantum state perturbation
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Alice Bob

1. raw qubits
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basis choices
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and this right
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• Messages must be authenticated
• Alice and Bob loose 50% of the raw bits on average
• Eve can get some information from bits and messages
• How much?

• 75% of correct bits (but she wouldn’t necessarily know which
ones)

• More info with messages

• Can she be detected?
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Breaking QKD

QKD is theoretically proven to be secure, but is there a large gap
between ideal theory and actual implementations? What about side
channels?



Fake states

The no-cloning theorem prevents us from making an exact copy of
a quantum state. However, we can create classical states that have
the same observable properties as quantum states.
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Fake State Generator



The attack

• Used an actual QKD system (E91 protocol) from previous
experiments

• Inserted Eve into a ∼ 300 m setup
• Eve uses identical measuring equipment
• Eve also forces Bob’s polarization basis choice
• Again, the Quantum parts are still valid and secure



A quick background on detectors

Impact ionization

Electric field



A quick background on detectors (cont.)

• Impact ionization in an area with a high electric field can lead
to an “avalanche current”

• An external circuit is used to then quench the avalanche
current and then recharge the circuit

• Main idea: a single photon is enough to cause a macroscopic
current because of the avalanche process
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Faking states

If Eve measures the photons, could we use classical light instead of
single photons to control the detector?
• We wouldn’t have asked if the answer wasn’t yes!
• There is a stray capacitance that needs to recharge for the
next avalanche

• If enough photons keep hitting the diode so that the cap can’t
recharge, the avalanche current decreases (c.w.)

• Bob’s detector is now blinded and the PD’s current now
responds classically - with a threshold power � a single photon
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Faking states (cont.)



Hooray for faked states

Faked states sent Clicks at Bob’s Detector
V A H D

1,702,067 V
1,693,799
(99.51%)

0 0 0

2,055,059 A 0
2,048,072
(99.66%)

0 0

2,620,099 H 0 0
2,614,918
(99.80%)

0

2,359,494 D 0 0 0
2,358,418
(99.95%)

The wrong detector is NEVER triggered!
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Hooray for faked states (cont.)

The increased QBER is not statistically significant



Some thoughts on this attack

• It is based on a specific implementation
• Requires passive basis choice, but...
• Could be detected by measuring intensity
• Brings up a good point: Does the security of QKD actually
rely on nature? Or just how well we can build systems?
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Quantum Networks



What are they?

A quantum network is a set of quantum nodes connected by
quantum channels

Main motivations for building quantum networks:
• Connecting quantum computing/communication elements
• Investigating quantum interactions (fundamental research)

This can be achieved by sending quantum particles or distributing
entanglement interactions.
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And focus on the problem: we need to establish a quantum channel
over a long distance. Don’t worry about polarization encoding,
one-time-pads, etc...
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Earlier in lecture: optical fiber has attenuation of ≈ 0.15 dB/km

But what does that mean physically?

For a single photon, probability of absorption ∼ exp(Lfiber)
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The problem (cont.)

Earlier, we said no cloning . . . so amplifiers are out.

What if instead of copying states, we extended them so that they
would cover the necessary range?

Introducing Quantum Repeaters:
• The idea is to create entanglement pairs over long distances
• This can be accomplished by utilizing intermediate “connection
points”

• At these connection points, we can swap entanglement states
• Remember, we aren’t copying - we’re transferring
• Major challenge: heralding
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A little bit more on atoms and photons

|e〉

|g〉
|s〉



State transfer using atomic energy levels

• If we can force a transition from |g〉 → |e〉 → |s〉, then
detection of the photon from the |e〉 → |s〉 transition can
herald our storage

• However, ensuring a particular photon couples with a specific
atom is difficult for many reasons

• So use lots of photons and lots of atoms!
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State transfer using many-body systems (picture form)

That’s nice, but we were really interested in entanglement
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Duan, Lukin, Cirac and Zoller (DLCZ) Protocol

• The pulses from the photons interfere at the 50/50 NPBS
• A click at only one of D1 or D2 ⇒ ensembles are entangled

• A single click indicates that one of the ensembles (we don’t
know which) has transitioned from |g〉 to |s〉
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DLCZ Repeater

• Prepare two entangled pairs
• “Read” the states simultaneously
• Just like before, the photons interfere at the BS and a click
signals success (L & R are entangled)

• This allows for quantum communication over long distances



DLCZ Repeater thoughts

• Can tolerate certain inefficiencies very well - photon detectors
50% or lower efficiency should work

• However, this is still a highly intricate system
• But, the error rate is projected to be � than the attenuation
• Still waiting on some good experiments



QKD using DLCZ



The Grand Conclusion

• QKD is theorectically secure and appears to be feasible (with
existing commercial implementations)

• As always, implementation is a key detail regarding security
• Quantum networks are a long, long way off
• Research on quantum computing seems to be worse off than
communication, so you’ve still got time left on your private
keys
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