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ABSTRACT
Many users face surveillance of their Internet communica-
tions and a signi�cant fraction su�er from outright blocking
of certain destinations. Anonymous communication systems
allow users to conceal the destinations they communicate
with, but do not hide the fact that the users are using them.
The mere use of such systems may invite suspicion, or access
to them may be blocked.

We therefore propose Cirripede, a system that can be
used for unobservable communication with Internet desti-
nations. Cirripede is designed to be deployed by ISPs; it
intercepts connections from clients to innocent-looking desti-
nations and redirects them to the true destination requested
by the client. The communication is encoded in a way that
is indistinguishable from normal communications to anyone
without the master secret key, while public-key cryptogra-
phy is used to eliminate the need for any secret information
that must be shared with Cirripede users.

Cirripede is designed to work scalably with routers that
handle large volumes of tra�c while imposing minimal over-
head on ISPs and not disrupting existing tra�c. This allows
Cirripede proxies to be strategically deployed at central lo -
cations, making access to Cirripede very di�cult to block.
We built a proof-of-concept implementation of Cirripede an d
performed a testbed evaluation of its performance proper-
ties.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks ]: General|
Security and protection ; E.3 [Data ]: Data Encryption; K.4.1
[Computers and Society ]: Privacy
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1. INTRODUCTION
The Internet has become a serious threat to repressive

regimes as it plays an increasingly powerful role in the free
circulation of speech, information, and ideas. To counter
this, countries that restrict political freedom and corpor a-
tions that aim to silence whistleblowers limits open access
to the Internet [61], thereby disrupting the free ow of in-
formation and ideas as well as preventing citizens and em-
ployees from sharing their own information with the world.
To do this, repressive regimes leverage IP-address blocking,
DNS hijacking, and TCP content �ltering to block access
to certain destinations or to prevent certain forms of con-
tent from being transmitted [3, 33]. To ensure compliance
and to detect undercover political/social activists, repre s-
sive regimes also monitor usage by leveraging Deep Packet
Inspection (DPI) and other technologies [33]. Consequences
of non-compliance can be severe, ranging from identi�cation
and termination of employment to life-threatening prosecu-
tions under repressive governments. Manipulating access to
the Internet seems increasingly important in silencing cor -
porate misconduct and for repressive governments to retain
their power. Recent events in Tunisia, Libya, and the rest
of the Middle East give strong indications that oppressive
regimes can even be overthrown by the power of people mo-
bilized to �ght by organizing, communicating, and raising
awareness through use of the Internet.

To help Internet users retain openness of communication,
a number of systems have been developed, includinganti-
censorship and anonymous communication systems [2,9,13,
17,30]. These systems, composed of computer and network-
ing technologies, enable evasion of monitoring, blocking, and
tracing of the information over the Internet. HTTP prox-
ies [1, 9, 13] are the early circumvention tools that perform
simple proxying of the HTTP requests in order to evade
the IP-blocking and DNS hijacking techniques used by the
early censors. The use of advanced content �ltering by the
censors [3, 15] led to the advent of more sophisticated cir-
cumvention tools such as Ultrasurf [2] and Psiphon [30].
These systems evade blocking techniques by avoiding �re-
walls and content-�ltering systems. To evade monitoring,
anonymous communication systems, such as Tor [17], were
developed. These systems aim to hide the destinations a
user visits from outside observers. Di�erent designs have
been proposed for anonymous communication, including the
onion routing mechanisms [53] and the mix networks [12],
each having di�erent points of strengths and weaknesses.

While these systems are of great bene�t, they share one
common shortcoming: they do not hide the fact that the user



is using these technologies. For example, a repressive regime
in control of its nation's networks may not be able to detect
which remote sites a Tor user is visiting, but it will be able
to detect that the user is using Tor. This presents several
problems. It calls attention to certain users of these services,
which may bring about further investigation or detainment.
In addition, if use of these services can be detected, access to
them can also be blocked. For example, relays that run the
Tor service have been blacklisted by several countries [4].

To address these issues, we need technologies that pro-
vide unobservablecommunication that circumvent monitor-
ing and censorship technologies. As a �rst step in that di-
rection, we describe Cirripede , a platform for unobservable
communication with Internet destinations. From the per-
spective of a monitoring entity, a user of Cirripede appears
to be making regular network connections, while the user is
actually getting connected to destinations that are forbid -
den by that monitoring entity. To do this, Cirripede requires
in-network support, through con�guration changes and de-
ployment of overlay nodes outside of the repressive regime's
network. We envision these in-network changes may be
o�ered as a service by some participating ISPs, or man-
dated/supported by non-repressive governments (or NGOs)
to encourage the freedom of speech abroad.

In order to use Cirripede for the communication, a user
needs to be registered in the system. This is performed by
using covert channels inside the TCP headers of legitimate
tra�c . We design a cryptographic protocol that ensures that
a client's registration messages can only be recognized by
the Cirripede registration servers, whereas anyone else can-
not distinguish them from regular tra�c. The protocol uses
public-key technology to eliminate the need of a (long-term )
shared key between the Cirripede service and its clients.

The list of the registered clients is provided to border
routers of participating ISPs, which deect tra�c from the
clients to a Cirripede proxy. The proxy tunnels communica-
tion between the client and its true destination by replacin g
the encrypted payload of an HTTPS connection seemingly
destined to a benign site. This provides a high-bandwidth
channel that can be used to access a wide range of Internet
services, including blocked websites and anonymous com-
munication systems such as Tor. By strategically placing
deecting routers in the Internet core, it is possible to mak e
the Cirripede service available to a large user population|
we show that using only two tier-1 ASes can deliver Cir-
ripede service to all Internet hosts. In this case, censors
cannot block access to Cirripede without blocking a signif-
icant fraction of all Internet sites. Cirripede can operate
on the existing router infrastructure using o�-the-shelf ne t-
working tools, with low-cost commodity servers providing
the registration and proxy services.

The rest of this paper is organized as follows; in Section 2,
we de�ne the problem targeted in this paper and describe
the system model and assumptions. We describe the Cir-
ripede design in Section 3. In Section 4, we address some
technical and security issues of Cirripede in practice. Sec-
tion 5 describes our prototype implementation on commod-
ity hardware and opensource software. Section 6 describes
a laboratory evaluation of our prototype implementation as
well as studies Cirripede's usability under di�erent deplo y-
ment scenarios. In Section 7 we discuss the related work.
Finally, the paper is concluded in Section 8.

2. PROBLEM STATEMENT AND THREAT
MODEL

We consider the following problem: a client is being mon-
itored by its host ISP, which we will call the warden. (Note
that we use the term ISP loosely here; in the case of China,
for example, the warden is comprised of all of the Chinese
ISPs and monitors all tra�c leaving China.) The client
aims to communicate unobservably with a covert destina-
tion , without this communication being detected by the war-
den either directly or indirectly (by, e.g., observing that t he
client is using some sort of anonymous communication sys-
tem). We assume that the warden can inspect the entirety
of the tra�c between the client and the outside world. Ad-
ditionally, the warden can block tra�c with certain destina-
tions (including the covert destination), based on simple I P
�ltering and/or deep packet inspection. We assume, how-
ever, that the warden is only willing to perform selective
blocking and is unwilling to block Internet access entirely,
use a small \white list" of allowed sites, or block all HTTPS
(port 443) tra�c. As evidenced by the shutdown of Internet
access in Egypt in January of 2011, there are some wardens
who might take the above actions; we feel, however, that in
the majority of cases, the wardens will be reluctant to take
such drastic steps. (Indeed, the Internet shutdown in Egypt
lasted only a week.) On the other hand, we assume that
the warden is willing to block certain web sites and services
(even popular ones) if it learns that they are being used to
circumvent blocking.

Finally, we assume that the client is not privy to any secret
information that is unavailable to the warden. In particula r,
we assume that the warden is aware of all the details of the
system design, while the client relies on public information
only. This is in contrast to previous proxy-based designs
that assume, at a minimum, that the warden cannot learn
the addresses of all proxies, yet must make the same proxy
addresses available to a large population of users. In our
case, the client only needs to obtain a public key of the
system, which we assume is also available to the warden; we
also assume that the warden can identify where the relevant
proxies are located but is unable to prevent access to them
without blocking a signi�cant fraction of all Internet sites .

We assume that the warden does not actively tamper with
the tra�c sent by the client; we leave unobservability with
respect to more active wardens to future work.

3. Cirripede ARCHITECTURE
The architecture of Cirripede is shown in Figure 1. The

main components are:

� Client ( C): the Internet user who aims to establish
an unobservable connection with a covert destination
(CD ).

� Warden ISP: the network provider hosting client C.
� Covert destination ( CD ): a website, access to which is

blocked by the warden ISP.
� Overt destination ( OD ): a website, access to which

is allowed by the warden ISP. C communicates with
this destination overtly to provide a carrier channel
for covert communication with CD .

� Participating ISP: an ISP who participates in Cirri-
pede by deecting network tra�c to Cirripede servers.
This ISP must be on the (forward) network path from
C to OD .



� Cirripede registration server ( RS): a server that is
part of the Cirripede infrastructure, used for register-
ing clients who want to use the Cirripede service.

� Cirripede service proxy ( SP): another server, also part
of the Cirripede infrastructure, that connects with CD
and proxies communications with it over the overt com-
munication stream between C and OD .

� Deecting router ( DR): an Internet router, owned by a
participating ISP, that deects tra�c from a registered
client C to the service proxy SP.

We next provide an overview of the operation of Cirripede.

1. Client registration: A client C who wishes to use the
Cirripede service �rst must register with Cirripede.
Since its tra�c is observed by the warden, C uses a
covert channel in TCP headers to signal its intent to
register and to establish a secret key, shared with Cir-
ripede, to be used in later communication. The de-
ecting router DR mirrors part of all TCP tra�c it
sees to the registration server RS, which detects the
covert registration message and instructs DR to redi-
rect HTTPS tra�c from C to the service proxy SP.

2. Cover connection: After registration, C makes a TCP
connection with the overt destination OD , which is
deected by DR to SP.

3. Covert communication : C performs a TLS handshake
with OD , which SP interposes upon. After the hand-
shake, SP disconnects from OD and takes over the
TLS connection, which is used to tunnel communica-
tion between C and CD .

We detail these steps in the following sections.

3.1 Client registration
The �rst step in using Cirripede is registration. The client

must send a covert message to the registration server while
avoiding detection by the warden ISP. We chose to use a
covert channel embedded in TCP initial sequence numbers
(ISNs) [41]. Each endpoint of a TCP connection selects
a new initial sequence number for each connection, to pre-
vent potential confusion between di�erent TCP sessions tha t
use the same ports [44]. These sequence numbers, how-
ever, should also be di�cult to predict [6]. Modern oper-
ating systems, therefore, include a random component in
the ISN generation that can be used to carry a covert mes-
sage. Murdoch and Lewis [41] describe a covert channel that
can embed 24 bits of covert information inside an ISN while
faithfully mimicking the ISN generation algorithms of eithe r
Linux or OpenBSD. We adopt this channel for the purposes
of our registration protocol. One particular advantage of us -
ing ISNs is that they are observed in the very �rst packet of
the TCP session (the \SYN" packet); thus, to look for regis-
trations sent over this channel, the registration server ne eds
only examine a small fraction of the total packets seen by
the deection router. (See Section 7 for more details.) Each
registration is valid for a registration time interval T to min-
imize the e�ect of failures, as described later.

3.1.1 Registration Protocol
The client uses the TCP ISN covert channel to announce

its intention to use Cirripede. A simple approach would be
to embed a special tag inside the ISN that will be recognized
by the registration server. This, however, only obscures th e

behavior of the client from a warden who is completely un-
aware of Cirripede; if Cirripede became widely used, the
warden could start looking for the embedded tag directly. To
provide stronger protection from detection, we use a cryp-
tographic registration protocol based on Di�e-Hellman key
exchange [52].

The registration server creates a secret key kRS and a
Di�e-Hellman public key K RS = gk RS , using some group
G = hgi where the computational Di�e-Hellman assump-
tion (CDH) is believed to hold. The client generates its own
secret key kC and public key K C = gk C and sends it to
the registration server over the covert channel. This allow s
the client and the registration server to establish a shared
key, kC; RS = gk RS k C , which is then used to generate a reg-
istration tag. In particular, the shared key is used to seed
a cryptographically-strong pseudo-random number genera-
tor (PRNG), which is then used to produce an m-bit tag � .
Note that a secure PRNG will ensure that anyone not in pos-
session of the secret key cannot distinguish it from random;
we chose to use the AES-128 cipher in counter mode as the
PRNG. Altogether, the client sends the following message
over the covert channel:

K C jj �rst m bits of PRNG( kC; RS )

To implement the Di�e-Hellman protocol, we chose to
use Curve25519 [8], a state-of-the-art elliptic-curve Di� e-
Hellman design. Curve25519 provides a high level of secu-
rity and has a very fast implementation due to Bernstein 1 . It
also uses a bit string encoding of group elements that makes
it di�cult for the warden to distinguish K C from random
to detect the use of Cirripede. The underlying group is an
elliptic curve over Fp , where p = 2 255 � 19, thus a uniformly
random element of Fp , represented using 255 bits, will be
distributed nearly identically to a uniformly random 255-b it
string. Furthermore, although elliptic curve points are of the
form ( x; y ) 2 Fp � Fp , for the purposes of Di�e-Hellman, it
su�ces to send the x coordinate only, as Bernstein's imple-
mentation does. This allows us to send K C , along with a
33-bit tag � , using a total of 36 bytes, carried over the ISN
covert channel of 12 TCP connections.

The Curve25519 implementation in its recommended us-
age, however, produces only a fraction of all elements inFp

as public keys. First, the recommended domain for the se-
cret key kC uses only integers that are 0 mod 8, because ac-
tive subgroup con�nement attacks [34] can be used to deter-
mine kC mod 8. Second, the recommended base pointg = 9
in fact generates a subgroup of the elliptic curve of prime
order p1 , whereas the curve itself has size 8p1 . These choices
can easily be adjusted in our scenario; learningkC mod 8 is
not helpful to an attacker, especially since kC is only used
once. Likewise, switching a generator of the full group allows
an attacker to determine a few bits of information about kC

but does not invalidate the CDH assumption.
A more signi�cant issue is that only approximately half of

the elements of Fp form a valid x coordinate for the elliptic
curve, and it is easy for the warden to check whether the
client is sending a value that falls into this category over t he
ISN covert channel. If, over time, all of the ISNs from the
client, decoded as elements ofFp , are valid x coordinates, the
warden can be reasonably certain that the client is in fact
using Cirripede. To address this, we follow the approach
1http://cr.yp.to/ecdh.html



Figure 1: Cirripede architecture.

used in Telex [57] and use the twist of the elliptic curve.
The x coordinates of points on the twist are precisely those
points that are invalid x coordinates for the original curve.
To avoid certain active attacks, Curve25519 was designed to
have a twist group with order 4 p2 , where p2 is a large prime,
and thus the CDH is also believed to hold for the twist.
The implementation can be made to use the twist group G0

simply by choosing a generator g0 of G0. The registration
server has two public keys K RS = gk RS and K 0

RS = ( g0)k RS 0 .
The client randomly chooses to use the twist or the original
curve, each with probability 1/2. The registration server
can easily check whether K C sent by the client belongs to
the curve or the twist and use the corresponding secret key
to complete the Di�e-Hellman protocol.

3.2 Traffic deflection
As mentioned in the previous subsection the RS needs to

observe the contents of TCP SYN tra�c, in order to perform
the registration. To do this, the DRs must forward this infor-
mation to the RS. Since the DR may be an existing router
within the ISP network, to simplify deployment, we aim to
minimize the required changes to DR hardware or vendor
software. One way to do this is for the DR to simply for-
ward all tra�c to the RS in a similar manner to how scrub-
bing systems are deployed at some ISP networks (e.g., by
using the ERSPAN primitive in Cisco IOS ). Alternatively,
the router can be con�gured to only forward TCP SYN traf-
�c to the RS (e.g., by using the match field tcp control
bits eq 2 mask 0x3D command in Cisco IOS). The RS in
turn can write rules (\deecting tables") into the DR to for-
ward certain ows to the SP, in a similar fashion.

After a client C is registered, the registration server RS in-
forms the deecting routers to update their deecting table s
by adding an entry for C with the corresponding registra-
tion information. The registration information for a clien t
includes the client's IP address and the registration expi-
ration. At this point, any tra�c from the client C being
intercepted by any of the deecting routers will be deected
to the service proxy SP.

3.3 Unobservable communication
Once the tra�c from a registered client C is deected by a

deecting router, the service proxy SP intercepts this tra�c
in order to start the unobservable communication with the

client. The unobservable communication scheme is based
on establishing covert communication using legitimate en-
crypted tra�c, e.g., HTTPS tra�c. Note that such unob-
servable communication can also be designed using the exist-
ing TCP/IP steganography techniques over a non-encrypted
tra�c; as mentioned in Section 7, that results in signi�cant ly
lowering the capacity of the covert communication as com-
pared to using HTTPS.

Figure 2 illustrates the sequence of the messages exchanged
within the Cirripede system in order to establish an unob-
servable communication. Suppose that a client C has suc-
cessfully been registered by Cirripede; thus,SP possesses the
shared secret keykC; RS . The client starts an HTTPS con-
nection with an allowed overt destination OD . This tra�c is
deected by a deecting router DR toward the service proxy
SP. Consequently, the following messages are exchanged in
order to have the unobservable connection established:

1. Client C initiates an HTTPS connection with OD .
This connection is deected to and transparently prox-
ied by the service proxy SP until C and OD complete
their TLS handshake. (packets 1 to 4)

2. C sends a legitimate encrypted\application data"TLS
record (e.g., an HTTP GET request) to OD (this is to
prevent connection termination due to a false-connection
failure as discussed in Section 4.1). (packet 5)

3. SP terminates its TCP connection to OD on behalf of
C. (packet 6)

4. SP uses the shared keykC; RS to derive a new shared
TLS session key kC; SP (and initializes a new \cipher
spec"2). Under the new cipher spec, SP sends an en-
crypted TLS record of a 64-byte messageM 1 = [ M 0 jj r ]
to C to inform C of SP's presence.M 0 is a �xed known
32-byte message andr is a 32-byte random number.
(packet 7)

5. (C similarly derives kC; SP and initializes the new ci-
pher spec.) C decrypts the TLS record received from
SP and veri�es that the cleartext contains the message
M 0 . At this time, C switches to using the new cipher
spec for communication with SP.

6. C instructs SP to initiate a new connection to covert
destination CD . (packet 8)

7. Finally, C communicates with CD through the existing

2http://tools.ietf.org/html/rfc4346#section-7



TLS connection, while appearing to the warden to be
communicating with OD .

By having the CD be an entry point to an anonymous
network like Tor, the client's tra�c gets anonymized from
Cirripede as well. This is discussed more in Section 4.3.

4. Cirripede IN PRACTICE
In this section we describe and address some of the tech-

nical and security issues of the Cirripede scheme. We start
by listing two potential cases where Cirripede may not be
able to join a new client, and our extensions to address them
(Sections 4.1 and 4.2). We then describe some security prop-
erties of Cirripede (Section 4.3).

4.1 False connection failure
This is the case where an oblivious client Ĉ, who is not try-

ing to use Cirripede, is mistakenly registered by Cirripede 's
registration server. Because this may interfere with the
client's normal Internet activity, Cirripede should minimi ze
the rate of false-connection. As discussed in Section 3.1, the
registration tag � is 33-bit long. Thus, the false-connection
rate is 2� 33 , which is practically negligible for a given client.
In the rare case of a false connection, theSP informs the
RS to remove the mistakenly registered client Ĉ from the
list of the registered clients, and the RS will consequently
update the deecting table of the DR routers by removing
the entry corresponding to Ĉ.

The following is another source that may cause a false-
connection failure:
Clients with dynamic IPs: In many networks, IP ad-
dresses are assigned to the clients dynamically, e.g., using
the DHCP protocol. In this case, it might happen that an
oblivious client Ĉ gets assigned to an IP address that is cur-
rently registered with Cirripede.

Xie et al. [58] show that the inter-user duration of dynamic
IP addresses, i.e., the time between two di�erent clients us -
ing the same dynamic IP, depends on the type of the ISP
and has a direct relation with the bandwidth provided by
the ISP, but is typically on the order of several days. As
an example, Comcast Cable has an inter-user duration of at
least 10 days in more than 75% of the IP re-allocations. For
the SBC DSL provider, this interval is about one day. As
mentioned in Section 3.1, each client registration in Cirri -
pede is valid for a registration time interval T . After the
registration expires, the client needs to re-register with t he
Cirripede in order to use its service; this signi�cantly redu ces
the rate of false-connection failures caused by dynamic IP re-
assignments. In fact, the T value makes a tradeo� between
the user's need for re-registration and the false-connections
due to dynamic allocations of IP addresses.

4.2 Mis-connection failure
This is the case when a client C who has requested to be

registered by Cirripede, by sending the registration request
as mentioned before, has not been registered successfully.
Since no con�rmation message is sent to the requesting client
during the client registration step, due to some technical
constraints3 , there should be su�cient mechanisms by Cirri-
pede in order to prevent possible connection failures. In par-
ticular, when a not-successfully registered client C tries to
3This requires deecting routers to embed steganographic
messages into the TCP headers.

communicate with the service proxy SP by sending messages
encrypted with kC; SP , these messages directly reachOD ,
which cannot interpret them and will tear down the con-
nection. In this case, the warden ISP can infer the client's
anomalous behavior by observing frequent connection termi-
nations for the client. To prevent the mis-connection failu re,
the �rst message that deviates from the TLS protocol|the
\con�rmation message"|is sent by SP. By having SP send
the con�rmation message, the client can reliably determine
whether to continue communicating with OD or switch to
communicating with SP.

4.3 Security analysis
Table 1 summarizes di�erent security and privacy prop-

erties provided by Cirripede, as compared to other systems.
A censorship circumvention tool or an anonymous network,
e.g., Tor, do not provide unobservability from the warden
ISP. Using Cirripede alone provides unobservability from th e
warden ISP, but it does not provide destination-anonymity
from the Cirripede system itself: the service proxy knows
the covert destination being targeted by a client. In some
cases, a client does not trust the Cirripede service itself and
requires destination-anonymity from the Cirripede as well.
This can be easily provided by having the client use Cir-
ripede to reach a traditional anonymous network like Tor,
which is then used to reach the intended covert destination.
In other words, in this case an entry point to the Tor net-
work is requested for the CD destination. An alternative
approach for providing destination-anonymity from Cirri-
pede is to design a redundant structure for Cirripede; we
leave this for future research.

The mentioned security and privacy promises of Cirripede
are based on the assumption that Cirripede's private key
is not compromised. Having the private key of Cirripede
being compromised results in the exposure of Cirripede users
as well as their covert destinations and contents of their
covert communications, as is the case in other circumvention
services, e.g., Tor.

As mentioned before, Cirripede relies on participating ISP s
to deect HTTPS tra�c from registered clients to service
proxies. In the following, we discuss the security and privacy
promises of Cirripede considering di�erent assumptions fo r
the participating ISP.
Malicious participating ISPs: We consider a case where
a participating ISP is malicious, i.e., tries to identify cl ients
from its own network that use Cirripede. A participating
ISP has access to the deecting table, e.g., the list of reg-
istered clients, provided by Cirripede's registration serv er.
However, as the communication of Cirripede is encrypted
using a key shared between Cirripede and a client, a par-
ticipating ISP will not be able to disclose either the covert
destination address or the communicated content.

It may be possible to enforce two requirements to further
reduce the consequences of having a malicious participating
ISP; �rst, the participating ISPs are not selected from the
countries under the control of the oppressive regimes. This
reduces the chances of a malicious ISP to get access to the
deecting table of Cirripede. Second, for each newly regis-
tered client C the registration server RS only informs the
DRs that belong to the participating ISPs other than C's
host ISP. Hence, for a malicious ISP participating with Cir-
ripede the maximum information disclosed will be only the
identity of the registered clients that reside in other ISPs .



Figure 2: The connection sequence to perform the unobservab le communication.

Table 1: Features provided by using di�erent circumvention services.
Circumvention service Source-Anonymity Destination-Anonymity Destination-anonymity Unobservability

being used from destination from warden ISP from circumvention service from warden ISP
None No No N/A No

Anonymous Network (Tor) Yes Yes Yes No
Cirripede only Yes Yes No Yes

Cirripede + Tor Yes Yes Yes Yes

Honest but curious participating ISPs: Similar to
the case of a malicious participating ISP, an honest-but-
curious ISP can only get information about the identity of
registered clients that reside in other ISPs. However, no
information about either of the covert destinations, nor th e
communication contents of the clients is disclosed to the
participating ISPs.

5. PROTOTYPE IMPLEMENTATION
We have implemented a prototype of Cirripede on Linux.

5.1 Deflecting router
Without a real commercial router, we take advantage of

the routing capabilities of Linux. The DR forwards copies
of all TCP SYN packets to the RS by using the \TEE" tar-
get of iptables 4 . In order to deect packets from registered
sources to the SP, the DR uses policy-based routing. First,
we create a new routing table deflect , which contains a
single default route to the SP. (We assume the SP can be
multiple hops away from the DR; thus, to ensure correct
routing of deected packets, which have OD as the desti-
nation IP address, the DR sends those packets toSP in an
IP-in-IP tunnel.) Second, the DR uses the ip rule com-
mand to match the source IP addresses of registered clients
and route them according to the deflect table.

4http://www.net�lter.org/projects/iptables/index.html

5.2 Registration server
The RS useslibpcap 5 to capture the TCP SYN packets

forwarded to it by DR. From each captured packet, RS
extracts the source IP address and the (24 LSB of the) ISN.
The RS needs to accumulate 12 SYN packets from the client
before it can attempt to validate the client as described in
Section 3.1. (If the RS does not see a new SYN packet from
a client after a validation interval of Tv seconds, then it
removes the state for that client to reclaim memory.) If the
client is validated, RS (1) noti�es SP of the client IP address
and the key kC; RS , and (2) noti�es DR to start deecting
the client's tra�c.

5.3 Service proxy
At a high level, SP acts as a transparent proxy (i.e.,

client's packets have the OD for destination IP address), so
the standard con�gurations necessary for transparent prox-
ying apply. For the proxy software itself, we use squid 6

version 3.1.9, a popular HTTP proxy written in C++. We
selectsquid only because it is mature and can act as a trans-
parent proxy. We modify squid to receive noti�cation pack-
ets from RS and maintain a mapping from registered client
IP addresses to the correspondingkC; RS keys. For the TLS
protocol, squid uses the OpenSSL 0.9.8q library7 .

E�ectively, SP transparently intercepts and tunnels the
client's TLS handshake with OD . When SP detects the

5http://www.tcpdump.org/
6http://www.squid-cache.org/
7http://www.openssl.org/



TLS handshake between the client and OD has completed,
it \changes the CipherSpec" of the TLS connection with the
client to use the stream cipher RC4(though a real imple-
mentation should use the same cipher as agreed upon by
the client and OD ), and the \CipherSpec" (the cipher key
and MAC secrets) is derived from kC; RS . SP also clears the
read and write TLS sequence numbers to 0. The SP then
(optionally) closes its TCP connection with OD and immedi-
ately creates a new TCP connection to a local SOCKS proxy,
for which we use 3proxy 8 version 0.6.1. (Alternatively, one
could add the SOCKS protocol support into squid itself and
not have to connect to a separate SOCKS proxy.) After-
wards, squid simply tunnels tra�c between the client and
the SOCKS proxy.

5.4 Client-side proxy
It is undesirable to require modi�cations to existing appli-

cations to use Cirripede. Thus we employ at the client host
a local proxy, similar to the Tor proxy. This local proxy|
henceforth referred to as client proxy or CP |exposes an ap-
parent (see below) SOCKS interface. The CP is con�gured
with the hostnames/IP addresses of two servers to whom
packets from the client host will pass through a DR, though
these two servers can be the same. The �rst one is used by
the registration phase, and the second one is theOD . Upon
starting, the CP will generate TCP tra�c towards the DR
to register itself with Cirripede. The generated TCP tra�c
needs to contain the special ISNs, so either kernel support
or a userspace TCP stack is necessary. Our prototypeCP
simply generates SYN packets using raw sockets, without
using a full application connection.

Then, applications at the client host can use CP as a reg-
ular SOCKS proxy. However, CP does not interpret the
SOCKS requests. Instead, upon receiving the TCP connec-
tion of the request, it initiates an HTTPS connection to the
OD and proceeds to complete the TLS handshake with OD .
Then it \changes the CipherSpec" and clears the TLS se-
quence numbers similar to the SP, and then it expects the
very next TLS record (of type \application data") to con-
tain the con�rmation message. If that is the case, meaning
CP is in fact connected to the SP, then CP proceeds to
simply tunnel tra�c between the application and SP over
the TLS channel, without interpreting the SOCKS protocol.
Otherwise, it rejects the SOCKS request.

6. EVALUATION
We evaluate the registration component and the through-

put provided by Cirripede with experiments on the Univer-
sity of Utah's Emulab testbed [55]. Also, we use simulations
to study the e�ect of DR deployment on the ability of clients
to register with Cirripede.

6.1 Registration performance

6.1.1 Metrics
We are interested in the ability of the RS to handle real

tra�c load. The two main metrics are: (1) the fraction of
registration signals that the RS can detect, and (2) the load
on the RS (in particular, CPU and memory utilization).

8http://www.3proxy.ru/

6.1.2 Experiment setup and topology
For this experiment, we take an existing packet trace and

embed registration signals into the existing packets, witho ut
introducing new packets. We use a one-hour trace [32] cap-
tured in March, 2011 at CAIDA's equinix-sanjose monitor,
and �lter it to keep only TCP SYN packets. We assume
that all clients in the trace want to register; however, each
client registers only once, at the earliest opportunity. Be -
cause we do not inject new packets, a client needs at least
12 SYN packets to register. Out of over 94 million SYN
packets from over 6.4 million unique client IP addresses, we
can embed only 1,069,318 complete registrations.

The experiment consists of two machines: the DR and
the RS. Both are 2.4 GHz 64-bit Quad Core Xeon E5530
machines, with 12 GB of RAM, running Ubuntu 10.04 64-
bit. The machines are connected via a 1 Gbps Ethernet link
with zero latency. The DR simply uses tcpreplay 9 to re-
play the processed packet trace (which contains only TCP
SYN packets) against the RS. The replay speed is about
41,000 packets/second, resulting in a replay duration of 2300
seconds, which puts more pressure on theRS than a live cap-
ture would have. The RS uses four threads, each handling a
di�erent set of clients, partitioned by the hash of the clien t
IP address. The validation interval is one hour, e�ectively
meaning the RS does not timeout any client during the ex-
periment. The RS usessar 10 to collect CPU and memory
utilizations at two second intervals.

6.1.3 Results
The RS is able to receive 100% of packets that the DR

successfully sends. It detects 1,038,689 registrations, which
is a 97% success rate. We manually inspect a few of the
missed registrations and �nd the cause to be out-of-order
packets. Investigating further, we �nd via tcpdump that the
network is at fault: the DR sends packets in the correct
order, but they arrive at the RS re-ordered. In terms of
the load on the RS, for the duration of the experiment,
the average CPU utilization is 56% and the max 73%. The
average memory utilization is 1.1 GB and the max 1.6 GB.
The memory utilization increases through the experiment,
but this is as expected because as noted above theRS does
not timeout any client. From these results, we believe the
registration component of Cirripede scales well.

6.2 Throughput performance

6.2.1 Metrics
For these experiments, we only measure the performance

of downloading data from a web server (thus all clients are
pre-registered with Cirripede before each experiment). The
�rst metric we are interested in is the time to download the
�rst byte. This is a measure of the perceived responsiveness
of loading a website, especially for fetching small amounts
of data such as a static web page. The second metric is the
full page download time (though we only download a single
�le in our experiments, instead of a full web page containing
multiple objects, possibly from di�erent servers).

6.2.2 Experiment setup and topology
All hosts in the experiments, including the routers, are

2.4 GHz 64-bit Quad Core Xeon E5530 machines with 12 GB
9http://tcpreplay.syn�n.net/

10 http://sebastien.godard.pagesperso-orange.fr/
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Figure 3: CDF of the time to receive the �rst byte and the total time to download a 10 MB �le, with and
without using Cirripede, for 100 simultaneous clients, eac h downloading the �le 100 times.
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Figure 4: CDF of the time to receive the �rst byte and the total time to download a 1 MB �le for four
simultaneous clients, each downloading the �le 100 times us ing Cirripede.

of memory, running CentOS 5.5 64-bit. Unless otherwise
speci�ed, the links are 1 Gbps. Five servers run the Apache
web server11 version 2.2.3 with SSL support enabled. Five
client hosts use curl 12 version 7.15.5 as the application to
fetch �les from the servers, using HTTP. Due to NIC limits,
the clients are connected to the DR via two intermediate
routers; however, in all experiments, the link bandwidths at
the client hosts are the bottleneck. The DR is on the path
between all client-server pairs. The SP is directly connected
to the DR, and both the SP and DR have RTT of 150 ms to
all clients and 50 ms to all servers. Thus, the e�ective RTT
between all client-server pairs is 200 ms, approximating a
client in Asia accessing a server in the US.

In the �rst set of experiments, all �ve client hosts have link
bandwidths of 100 Mbps. On each client host, we launch 20
simultaneous\client" instances, each using curl to download
a 10 MB �le from a particular server 100 times over HTTP.
Across all �ve client hosts, we have 100 \client" instances.
We will compare results from using Cirripede and without
using Cirripede.

In the second set of experiments, we use four client hosts,
with di�erent link bandwidths to the network: 2 Mbps,
10 Mbps, 50 Mbps, and 100 Mbps. Each client host runs only
one client instance, using curl to download a 1 MB �le from
a server 100 times. All clients use the Cirripede service.

11 http://www.apache.org/
12 http://curl.haxx.se/

6.2.3 Results
For the �rst set of experiments, Figure 3(a) shows the

results for the time to the �rst byte. We see that Cirripede
adds a delay of no more than a few seconds, most of which
is due to the two extra round-trips of the TLS handshake
and the SOCKS request-response. Figure 3(b) compares
the total download times. The main take-away point is that
Cirripede provides comparable performance to the baseline
of not using Cirripede. For this particular setup, Cirriped e
can also result in faster download time. This is because
high latencies negatively a�ect TCP throughput. So, when
we use the SP, the original TCP connection is split into
two separate TCP connections, each with a lower RTT, so
each of these two connections has a higher throughput than
the original connection would have. Thus the e�ective end-
to-end throughput is improved. (We performed separate
experiments using a standard, non-Cirripede SOCKS proxy
to con�rm this behavior.)

Figure 4 shows the results of the second set of experi-
ments. We can see in Figure 4(a) that as expected, higher
bandwidths improve performance. However, because of the
high RTTs between clients and servers, increasing the band-
width yields diminishing returns for a standard TCP.

6.3 DR deployment simulation
In order to use Cirripede, a client needs to discover a path

to a website that traverses a DR. To ensure this happens
commonly, the provider of the Cirripede service needs to
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Figure 5: Fraction of sources that can utilize the system (i. e., that can discover a path that traverses a
DR), when DRs are randomly placed (a) across all ASes (b) only tier-1 ASes , and (c) when the warden ISP
attempts to block a randomly-selected fraction of most-pop ular web sites by Alexa Internet rank.
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Figure 6: Average number of probes source needs to send befor e discovering a DR, when DRs are randomly
placed (a) across all ASes (b) only tier-1 ASes.

make sure that su�cient DRs are deployed to \cover" most
clients. However, for economic, business, and security con-
siderations, the provider would like the number of DRs to
be small, and deployed at trust-worthy ISPs or in locations
under the provider's control.

To explore deployment considerations in practice, we per-
formed a simulation study. We constructed a simple path-
level simulator that reads in the Internet AS-level graph,
allows us to place the system components of the Cirripede
design at various ASes, and computes shortest policy-safe
paths. We used the most recent CAIDA AS-level topology
(sampled yearly, most recent sample on January 11, 2011).
To compute shortest paths, we applied Gao-Rexford policies
to the graph based on CAIDA's inferred AS-relationships.
We performed two key experiments:
Fraction of clients that can utilize the network (Fig-
ure 5): First, we studied how many clients (source hosts)
in the Internet would be able to join Cirripede, while vary-
ing the extensiveness ofDR deployment. Figure 5a shows
this result under the assumption that a random subset of
ASes in the Internet act as DRs. We also vary the frac-
tion of overt destinations the client is allowed to probe (in
practice, the client may wish to limit the set of overt des-
tinations probed, to reduce potential suspicion). We �nd
that even if only 5% of overt destinations are allowed to be
probed, then 0.4% of ASes deploying DRs is su�cient to
enable all hosts in the Internet to join the Cirripede net-
work. In practice, fewer ASes may su�ce, if cooperation
from ASes located near the repressive country/company are
available. In addition, if DR functionality is located near

the Internet core, fewer ASes su�ce, as larger numbers of
paths traverse these ASes. To study this, we evaluated per-
formance under the assumption that only tier-1 ASes act
as DRs, as shown in Figure 5b. Here we �nd that even
if only one tier-1 AS deploys Cirripede, 97% of clients can
use Cirripede, and this number increases to 100% if two
tier-1 ASes participate. Since hosts that communicate often
via Cirripede may appear suspicious to the warden ISP by
contacting randomly-placed destinations, we repeated our
study placing destinations according to the Alexa Internet
Top Global Sites ranking (Figure 5c), and observed similar
results (for example, if two tier-1 ISPs run Cirripede, and
hosts are allowed to probe among the top-30 most popular
sites, 100% of hosts are able to join Cirripede). Here, the
client selects among the top-k most popular Alexa-ranked
sites (each line in Figure 5c corresponds to a di�erent value
of k). Finally, Figure 5c shows the fraction of Alexa-ranked
top web sites the warden ISP would have to block to prevent
a host from joining Cirripede. We �nd that if hosts are al-
lowed to probe the top 1000 Alexa-ranked sites, the warden
would have to block more than 95% of these sites to be able
to block hosts. We also note that if hosts are aware of which
sites are blocked (e.g., if their join fails), they could sim ply
continue to probe more sites.
Overhead required to join the network (Figure 6):
To join the network, the client must discover a path to an
overt destination that traverses a DR. However, the set of
ASes containing DRs may wish to keep the fact that they
are participating in Cirripede a secret. Hence, the client
may have to \probe" multiple potential overt destinations



before it can discover a path that traverses a DR. To speed
joining, we would like the number of probes required to join
the network to be low. Figure 6a shows the number of probes
required under the assumption that a random subset of ASes
in the Internet act as DRs. Here, we �nd that even if only
5% of overt destinations are allowed to be probed, the source
only requires ten probes before discovering a path contained
a DR. Under the assumption that DRs are only deployed at
tier-1 ASes (Figure 6b), this value reduces to less than two.
This happens because most Internet paths traverse tier-1
ASes, meaning the client usually �nds a path through the
selected tier-1 on the �rst probe.

7. RELATED WORK

7.1 Covert Channels
Covert channels provide a means for unobservable com-

munication. These channels can be classi�ed into covert
timing channels and covert storage channels. Timing chan-
nels send information by embedding it inside the timing of
a stream of packets [11, 49]. The use of timing channels
can sometimes be detected using statistical tests by notic-
ing the modi�cations they make to the ordinary distribution
of packet timings [7,10,23]. To address this, newer channels
use various models to generate timings with a target distri-
bution [24, 29, 35, 48, 60]. However, it may nevertheless be
possible to detect the use of such channels if the models do
not capture all of the statistical properties of regular tra f-
�c; for example, Zander et al. [60] detect the use of covert
channels that use i.i.d. tra�c models [24, 48] by exploiting
inter-packet timing correlations present in regular tra�c .

Covert storage channels use some packet �elds that are
either unused or pseudo-random [25, 27, 41, 46]. Murdoch
and Lewis [41] analyze a number of covert storage channels
in TCP/IP; they show that a number of channels can be
detected because the packet �elds di�er signi�cantly from
those generated by a regular TCP/IP stack. They also
propose new covert channels that use TCP initial sequence
numbers in a manner that is indistinguishable from either a
Linux or an OpenBSD implementation. We use their chan-
nel in our registration protocol, see Section 3.1. Other re-
search suggests the use of the IP header TTL �eld [59],
IP addresses [26], TCP timestamp [25], and the order of
the packets [22]. Lucena et al. identi�ed a number of IPv6
header �eld that can be used for covert communication [36],
and application-layer protocols, such as HTTP or DNS, can
also be used for covert communications [5,50].

The aforementioned channels typically have limited ca-
pacities: storage channels typically send a small number
of bits per packet and timing channels likewise are sub-
ject to capacity bounds [42, 48]. Fortunately, the growing
prevalence of end-to-end encryption creates a possibility for
higher-bandwidth covert communication, since an observer
not in possession of a secret key cannot learn the contents
of an encrypted session. In particular, Cirripede captures
HTTPS [45] connections to innocent-looking destinations
and uses them for tunneling covert communication. Note
that an observer may be able to detect di�erences in tra�c
patterns, such as packet sizes and timings, in tunneled traf-
�c, so to ensure full unobservability, techniques to morph th e
tra�c patterns should be used [47,56]; we leave a full inves-
tigation of the application of these techniques to Cirripede
to future work.

7.2 Blocking Circumvention
Censorship systems, such as the Great Firewall of China,

use IP address blocking as their �rst line of defense [33]; a
natural circumvention strategy is, therefore, to connect t o
forbidden destinations via proxies. This approach is used
by the UltraSurf [2] and Psiphon [30] services; likewise, the
Tor anonymous communication network [17] uses bridges
that act as proxies for clients that cannot connection to Tor
directly [16]. A key problem with this approach is how to
distribute the IP addresses of proxies to users without their
falling into the hands of the censors [20,38,39,51]; over time,
it is expected that the censors can enumerate all proxy IP
addresses [40], allowing them to block new users as well as
identify past users in traces.

Infranet [19] attempts to disguise communication between
the client and the circumvention proxy as a normal web
browsing session: a client uses a covert channel based on
the sequence of HTTP requests to communicate what true
destination it wants to reach; the proxy then fetches the
data and uses steganography to embed it inside images that
it serves back to the client. However, as with other proxy
approaches, it relies on the censor not knowing the proxy
address. Burnett et al. propose Collage [19], which avoids
this problem by using sites that share user-generated con-
tent, such as images onflickr.com for carrying forbidden
content. Client requests are, likewise, sent via such images,
improving unobservability, but signi�cantly reducing the i n-
teractive performance of the client. A second problem is tha t
a censor might discover which sites are used for such com-
munication and block them entirely; for example, Burnett
et al. consider sending user generated content via Twitter,
which has already been blocked by several countries.

A key di�erence between Cirripede and the above proxy-
based approaches is that, in our case, the proxy is embed-
ded within the network itself, and blocking individual web
sites is ine�ective against Cirripede. Concurrently with o ur
work, Wustrow et al. [57] and Karlin et al. [31] proposed cir-
cumvention systems|Telex and Decoy routing|that share
this high-level strategy, though make slightly di�erent de -
sign choices. Unlike Cirripede, Telex and Decoy routing do
not use a registration protocol; instead, clients insert a s ig-
nal directly into a TLS handshake. This strategy requires
the service to monitor all port 443 tra�c, including the pay-
load, and reconstruct the underlying TCP sessions. In Cir-
ripede, on the other hand, the registration server monitors
only packet headers of TCP SYN packets, and the service
proxy monitors only tra�c from registered clients. This re-
sults in a signi�cant reduction in tra�c volumes: using two
CAIDA traces gathered in March 2011 [32], we found that
the volume (in IP datagram length in bytes) of SYN packets
for all ports was only 4{7% that of port 443 tra�c. On the
other hand, adding signals to individual ows sidesteps is-
sues around packet loss, dynamic IP addresses, and network
address translation.

A second consequence of this strategy is that Telex and
Decoy routing must hijack a TCP session already in place,
whereas Cirripede (transparently) proxies the entire TCP
session of registered users. Such hijacking is complicated by
the possibility of asymmetric paths, which are common in
the Internet [18], since only half of the connection might be
seen by the server. Telex is designed to work only for sym-
metric communication paths, whereas Decoy routing han-
dles this case by having the client use a covert channel to



send information about the part of the connection unseen by
the router. Hijacking must also be performed in real time,
whereas the Cirripede registration process is more tolerant
of processing delays at the service.

Telex uses a signaling protocol that, like Cirripede, uses
Di�e-Hellman over an elliptic curve; it uses a di�erent curv e
and has additional security features that protect against p o-
tential replay attacks by the warden. Decoy routing opts
to use symmetric-key cryptography for signaling in order to
achieve better scalability; it therefore requires each client
to negotiate a shared key with the service using some out-
of-band mechanism. Finally, Telex has some support for
mimicking the TCP stack of the overt destination to avoid
�ngerprinting attacks [37] that could be used by the warden
to detect the presence of a proxy. We leave a full analysis
of the practical implications of the above design tradeo�s t o
future work.

7.3 Unobservable Communication
Vasserman et al. [54] create a membership concealing over-

lay network (MCON) for unobservable communication; they
aim to make it di�cult for either an insider or outsider ad-
versary to learn the set of participating members. All com-
munication in MCON takes place over links between individ-
ual members who trust each other. This is similar to previ-
ous \darknet" designs, such as WASTE [21], Turtle [43], and
recent versions of Freenet [13,14]; Vasserman et al. identify
security aws in those designs and propose improvements.
To be e�ective, MCON requires a large number of partici-
pants to create a well-connected network, so that new clients
can easily �nd points to join, whereas Cirripede requires a
small number of servers, albeit well-placed in the network.
The MCON evaluation further focuses on communication
between members, rather than connection to external desti-
nations. Another system for unobservable communication,
NoneSuch [28], uses image steganography, similar to Col-
lage. It uses the Usenet network for exchanging images and
does not aim to address blocking by censors.

8. CONCLUSIONS
In this paper, we presented Cirripede, a system for un-

observable communication with Internet destinations to ci r-
cumvent monitoring and censoring technologies. Our design
leverages in-network support to intercept client requests and
redirect them to a covert destination, in a manner di�cult
to observe by adversaries who may control the client's access
network. Through simulations on the Internet topology, we
�nd that a small number of tier-1 ASes deploying our de-
sign can provide access to most end hosts in the Internet.
Through an emulation-based study of an implementation of
our design, we �nd that our design can process packets with
low overheads.
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