
Mining on Someone Else’s Dime:

Mitigating Covert Mining Operations in Clouds

and Enterprises

Rashid Tahir1
(�), Muhammad Huzaifa1, Anupam Das2, Mohammad Ahmad1,

Carl Gunter1, Fareed Zaffar3, Matthew Caesar1, and Nikita Borisov1

1University of Illinois Urbana-Champaign

{tahir2,huzaifa2,mahmad11,cgunter,caesar,nikita}@illinois.edu
2Carnegie Mellon University

anupamd@cs.cmu.edu
3Lahore University of Management Sciences

fareed.zaffar@lums.edu.pk

Abstract. Covert cryptocurrency mining operations are causing notable

losses to both cloud providers and enterprises. Increased power consump-

tion resulting from constant CPU and GPU usage from mining, inflated

cooling and electricity costs, and wastage of resources that could other-

wise benefit legitimate users are some of the factors that contribute to

these incurred losses. Affected organizations currently have no way of

detecting these covert, and at times illegal miners and often discover the

abuse when attackers have already fled and the damage is done.

In this paper, we present MineGuard, a tool that can detect mining

behavior in real-time across pools of mining VMs or processes, and

prevent abuse despite an active adversary trying to bypass the defenses.

Our system employs hardware-assisted profiling to create discernible

signatures for various mining algorithms and can accurately detect these,

with negligible overhead (< 0.01%), for both CPU and GPU-based miners.

We empirically demonstrate the uniqueness of mining behavior and show

the effectiveness of our mitigation approach(≈ 99.7% detection rate).

Furthermore, we characterize the noise introduced by virtualization and

incorporate it into our detection mechanism making it highly robust.

The design of MineGuard is both practical and usable and requires no

modification to the core infrastructure of commercial clouds or enterprises.

Keywords: Cryptocurrency · Cloud abuse · Hardware Performance Counters

1 Introduction

For most popular cryptocurrencies, such as Bitcoin and Litecoin, it is not profi-
table to mine using one’s own resources unless the mining is carried out using
specialized hardware [17]. However, the exercise can be of value if carried out
on “stolen” resources, such as pools of hijacked VM instances or resources
acquired under false pretexts (e.g., for research). This has incentivized both

Mitigating Covert Mining Operations in Clouds and Enterprises

hackers [8, 11, 18] and unethical employees, such as professors [15], academic
researchers and students mining on university-owned resources [10, 26]. Even
IT admins [7] have been found doing covert cryptomining. One researcher, for
instance, misused NSF-funded supercomputers to mine for Bitcoins costing the
university upwards of $150,000 [44]. On two other noteworthy occasions, NAS
device botnets secretly mined for DogeCoin and Monero amounting to $600,000
and $82,000 respectively, before the covert operations were eventually discovered
and shut down [14,29]. There are several other instances of employees and hackers
secretly mining for coins in both the corporate [5] and government sectors [4].

This covert abuse of “borrowed” resources is not limited to enterprises and has
also been observed in commercial clouds and datacenters [11]. The sheer amount
of resources needed for a covert cryptomining operation are readily available
in a cloud setting. Furthermore, since mined coins can easily be transferred to
the attacker using a simple anonymized wallet address, it makes the “get away”
scheme straightforward [1]. As a result, numerous instances of this targeted cloud
abuse have already been uncovered, whereby attackers successfully broke into
clouds and deployed cryptominers at a massive scale by spawning numerous VM
instances dedicated exclusively to mining [9, 11, 18]. The advent of GPU clouds,
such as those operated by Amazon and Microsoft, have further incentivized
attackers to transfer their operations onto clouds and leverage the power of
parallel computing, as GPUs often have higher hash rates and perform better for
certain mining algorithms.

In this paper we present MineGuard, a simple hypervisor tool based on
hardware-assisted behavioral monitoring, which accurately detects the signature
of a miner. Specifically, our system uses Hardware Performance Counters (HPCs),
a set of special-purpose registers built into modern processors, to accurately
track low-level mining operations or events within the CPU and GPU with
minimal overhead. This gives MineGuard the ability to accurately detect, in
real-time, if a VM is trying to mine for cryptocurrency, without incurring any
substantial slowdown (< 0.01%). MineGuard is built on the observation that
for attackers to mine for any cryptocurrency, they will have to repeatedly run
the core Proof-of-Work (PoW) algorithm that the currency is based on (such
as Scrypt [32] for Litecoin) millions of times at the very least. Such repeated
runs would substantially influence the count of certain HPCs in a particular way,
which we can detect using a runtime checker. We empirically demonstrate very
high detection rates (≈99.7%), low false positives (< 0.25%) and false negatives
(< 0.30%). Furthermore, our system does not modify any hypervisor code and
leverages commonly available tools such as perf [19], thus making it easy to
deploy and use in cloud and enterprise environments. We believe that attackers
cannot deceive MineGuard as 1) it attempts to catch the inherent mining behavior
essential for mining and 2) it is more privileged than a VM and hence difficult to
bypass. We make the following contributions:
Behavioral Analysis of Cryptomining: We perform a first-of-its-kind com-
prehensive study to explore the behavior of cryptocurrency mining focusing on
micro-architectural execution patterns. Specifically, 1) we show that CPU/GPU

Mitigating Covert Mining Operations in Clouds and Enterprises

signatures of mining and non-mining applications differ substantially; 2) different
implementations of the same coin exhibit similar signatures due to the same
underlying PoW algorithm, meaning that mining should be detectable by profiling
an algorithm instead of the executing binaries (to overcome polymorphic mal-
ware) and 3) surprisingly, profiles of various coins exhibit overlapping signatures,
despite having different PoW algorithms.
HPC Monitoring in Virtual Environments: While prior work has demon-
strated the use of HPCs for malware detection, their utility and feasibility in a
virtualized context has largely been ignored. We characterize the noise that is
introduced into each HPC value individually due to virtualization, and show the
best-fit distribution for this noise in each case. Our findings indicate that certain
counters have a very pronounced noise-distribution, which can be used to error-
correct the signatures. In contrast, some HPCs show negligible effects of noise.
To incorporate this noise into our behavior profiles we develop a step-by-step
signature creation process that captures an evolving profile of mining malware in
increasingly noisier environments making our detection robust under different
virtualized environments.
Userspace Detection Tool: We build a user space tool, MineGuard, that
can run on top of any hypervisor or host OS and perform real-time detection.
MineGuard has a negligible overhead, a small size footprint, is hard to evade,
and cannot be compromised by malicious VMs. We believe MineGuard can be
extended for other resource-intensive malware with minor modifications and
serves as a valuable addition to the cloud security toolbox.
Paper Organization: We discuss the cost of covert cryptomining in Sect. 2 and
how HPCs can be used to detect such miners in Sect. 3; followed by our system
design in Sect. 4, methodology in Sect. 5 and evaluation in Sect. 6. Limitations are
presented in Sect. 7 and related work in Sect. 8. Finally, we conclude in Sect. 9.

2 Understanding the Cost of Covert Cryptomining

Apart from using compromised accounts and hijacked VM instances for mining,
hackers can also exploit the freemium business model of clouds. They can amass
the complimentary resources allocated to individual accounts and build a large
valuable pool [48,51], e.g., building an unlimited “slack space” on top of small
free storage shares in Dropbox [43]. This issue has recently gained more traction
amongst cloud providers with Google expressly forbidding any mining-related
activity in its free tier resources [27]. Furthermore, providers also offer free
resources under other specialized programs, such as to app developers and students.
These resources can also be abused in the aforementioned manner. As evidence
to these freeloading issues, researchers recently constructed a mining botnet
on Amazon entirely out of free resources [11]. The mining botnet was capable
of generating cryptocurrency worth thousands of dollars and went completely
undetected, despite its large footprint and conspicuous behavior.

These covert and cleverly concealed mining operations are a serious financial
concern for admins. First, they waste valuable resources. Second, to maximize

Mitigating Covert Mining Operations in Clouds and Enterprises

the hash rates hackers push CPUs/GPUs to full compute capacity for extended
periods of time. This increases power consumption and generates heat, both of
which impact operating costs [6]. Hence, it is imperative that mining deployments
be thwarted before different losses stack up.

Users can’t prevent this abuse as attackers can easily get root access and
bypass security mechanisms or simply spawn their own VMs using stolen accounts.
Similarly, providers and admins also struggle to mitigate these mining rigs [18],
as they cannot distinguish mining from other types of workloads from outside
the VM. Traditional VM instrospection techniques, such as analyzing memory
dumps [41] or virtual disk monitoring [45], could be used but they have a large
overhead and do not scale well. Also, if vendors start “peeking” into customers’
VMs (e.g., by analyzing memory dumps), they run the risk of compromising the
confidentiality and privacy of sensitive user data and computations.

Hence, a tool like MineGuard that proactively detects mining-related abuse
(on free and stolen/compromised instances) and does not directly look at user
data or code, is needed as a part of the provider’s security toolbox.

3 Using Hardware Performance Counters

Past work has shown the effectiveness of hardware-based monitoring for malware
detection [34, 35, 53–55] using architectural and microarchitectural execution
patterns. The approach is predominantly characterized by an extremely low
performance overhead making it ideal for real-time monitoring on latency sensitive
systems. We build upon these past works and present the design of a system
based on Hardware Performance Counters (HPCs) for detecting mining behavior
on clouds/enterprises. HPCs, outlined in Table 2 later on, are a set of special
purpose registers internal to the processor that record and represent the runtime
behavior and characteristics of the programs being executed. Common examples
include counts of page faults, executed instructions, cache misses etc. Though
developed to aid application developers in fine-tuning their code, HPCs can also
be used for behavior profiling without directly looking at code and data. Other
than the fact that HPCs are extremely fast, their choice as the main detection
metric is based on the following insights.

First, miners need to run the core PoW algorithm of a coin repeatedly,
millions of times. If an algorithm A alters a few specific HPCs, say counters
X, Y and Z, as part of the main hashing operations, then the values for these
three counters should dwarf counts of all other (relatively under utilized) HPCs
given that algorithm A has to run millions of times. This implies that a very
strong signature can be constructed based on the relevant counters of a particular
algorithm, such as Scrypt [32] or CryptoNight [2]. If an adversary tries to stay
under the radar by mining conservatively, then the hash rates will take a hit and
profits will decline correspondingly making the exercise less lucrative. Also, since
the processor will remain relatively under utilized, power and cooling costs will
stay at manageable levels, making mining less of a nuisance for cloud vendors.

Mitigating Covert Mining Operations in Clouds and Enterprises

Second, any computation can only ever add to the values of HPCs and has no
way of reducing counter values, as opposed to software-based defenses, which the
attacker can subvert and alter. Hence, if an adversary mines for a coin, they will
have no way of reducing counter values to avoid detection, and will be flagged
with high likelihood. An adversary however, can try and neutralize the signature
by increasing the values of other HPCs not associated with the PoW algorithm.
But to do so successfully, the adversary has to overcome two hard challenges.
First and foremost, they have to figure out a computation that only affects HPCs
other than the ones related to the mining algorithm. In other words, there can be
no overlap in the counters altered by the miner and the computation in question.
Otherwise, the signature of the miner will only be bolstered further. Second, and
more importantly, they have to run the secondary computation millions of times
so that counter values are approximately equalized. However, the extra load on
the system would greatly diminish the hash rate of the miner, reducing their
profits.

Finally, HPCs are low-level registers and can be directly accessed by the hy-
pervisor, requiring no modifications to the guest OS or applications. Furthermore,
an adversary that manages to compromise a VM, even with root access, will not
be able to falsify the values of the HPCs as the hardware does not allow this.

4 Design and Signature

The design of MineGuard was influenced by the following observations: First,
unlike generic malware that can exploit users in novel ways, miners have to stick
to the core PoW algorithm on which a cryptocurrency is based. This means that
if a signature is built specifically for the algorithm, various implementations, even
polymorphic and metamorphic ones, would be detectable. Second, detection has
to be performed in a manner oblivious to the VM so that a malicious party cannot
identify if they are being profiled or not, lest they start behaving differently.
In addition, if a malicious entity does start behaving differently to cover up its
tracks, it should incur a massive penalty, thereby defeating the whole purpose of
the attack. Third, the detection mechanism has to be more privileged than the
mining entity for obvious reasons. Finally, given the massive scale of clouds, the
mechanism needs to be highly scalable with low performance overhead.

Given these stringent requirements, a hardware-assisted mechanism that
can be executed on the host OS or the hypervisor emerged as the only logical
candidate. As shown in Figure 1A, MineGuard comprises of three components: A
Profiler, a Detection Agent, and a Mitigation Agent. These three components
run on each server in the cloud on top of the host or the hypervisor.

The Profiler instruments each VM in real-time by polling the HPCs with a 2
second interval. The interval length is an adjustable metric, as MineGuard can
use any user-defined sampling frequency to increase the accuracy even further.
However, since mining is a long-term activity usually carried out for several hours
at the very least (as opposed to short-term malware) we can easily afford to
utilize large sampling intervals. This has the benefit of minimizing MineGuard’s

Mitigating Covert Mining Operations in Clouds and Enterprises

MineGuard
Detection

Agent
Profiler

Mitigation
Agent

Host OS / Hypervisor

Virtual Machine 1

HardwareHPCs

Virtual Machine 3
Virtual Machine 2

Tenants Tenants

MineGuard MineGuard
Cloud

Orchestrator

Classifier Classifier

(A) (B)

Fig. 1. (A) Inner components of a MineGuard instance. (B) Overview of MineGuard.

Sequentially: MineGuard checks for current HPC values against the classifier. If a match

occurs, it discovers all other VMs of the tenant and shuts down/suspends these VMs if

they are also found mining.

resource usage and does not effect the quality of the signature giving highly
accurate detection rates as shown in Section 6. Furthermore, long intervals before
repolling for HPCs, minimizes the overhead experienced by legitimate users as
their VMs are profiled less often.

The Detection Agent runs the current HPC values against a classifier trained
to detect mining behavior. If the classifier outputs a positive match, the Detection
Agent flags the VM. Once a VM is flagged, the Mitigation Agent suspends it
temporarily and determines the location of all VMs belonging to that tenant by
contacting the cloud orchestrator as shown in Figure 1B. All of the tenant’s VM
are then put to further screening by the Detection Agents on their corresponding
servers. If more matches occur in this phase, the Mitigation Agents shut down
those suspicious VMs as well.
Signature Creation: To incorporate the noise introduced by virtualization, we
use a three-phased approach to creating accurate and precise mining signatures
for both CPUs and GPUs. For our purposes, a signature is a time series of
performance counter values of an application over a specified interval of time. To
generate such time series, in the first phase, we run miners for various coins in a
native environment and profile only the mining processes using perf [19] with a
sampling rate of 2 seconds (empirically chosen for ease and accuracy). This gave
us noise-free process-level HPC-based signatures for numerous coins. For GPUs
we used nvprof [3]. The signature that we obtain during this phase is cleaned so
that the bootstrapping code of the miner is not considered and only the signature
for the core PoW algorithm is captured. We call this signature the OS-level
signature. In the second phase, we run miners inside VMs to cater to noise that
is induced by executing in a virtualized environment. No additional processes are
run on the VMs other than the default OS ones and our cryptominers, giving
us pure VM-level signatures. This phase corresponds to a scenario in which an
attacker uses dedicated VM instances for mining coins. Finally, in the last phase,
we perform mining inside VMs that are already running other jobs and processes.
This allows us to capture signatures in the presence of maximum noise. We repeat
our experiments for various popular and common cloud workloads running in

Mitigating Covert Mining Operations in Clouds and Enterprises

parallel with a cryptocurrency miner. Signatures generated during this phase
are called VM-Interference signatures. The aforementioned scheme, explicitly
captures the effects of virtualization-induced noise and workload-induced noise
both of which are a must for efficient detection of mining activity.
Signature Database: MineGuard’s signature database, which we use to train
the classifier, is very small in size for numerous reasons. First, unlike generic
malware, miners have to stick to a core PoW algorithm. Whether the miner is
polymorphic, metamorphic or heavily obfuscated, the core algorithm, which we
profile in our system, remains the same. Since there are a finite number of coins,
and consequently a limited number of proof-of-work algorithms, added to the
fact that there is no such thing as a zero-day coin, our resulting signatures are
few in number (<100). This makes our signature database small. And, since each
signature in the database is distinct and prominent compared to other common
cloud workloads, as shown in Section 6, the classifier is able to build its inner
models successfully.

5 Methodology

Before we jump into the results, we explain our prototype implementation and test
environment, and present details of the cryptocurrencies, miners and benchmarks
we used for testing and evaluation.
MineGuard Implementation: We implemented MineGuard in userspace using
a combination of C++, Python and Bash. We used C++ for the signature
creation and detection modules, and Bash and Python scripts for profiling VMs
and collecting and organizing data. We used an open source random forest
library [25] for the bagged decision tree implementation, and perf/perf-KVM [19]
and nvprof [3] for CPU and GPU profiling, respectively. Upon deployment, a
driver script samples any given process (application/miner/VM) for 2 seconds
(equivalent to one test vector), formats the test vector and passes it to the predict
module to classify the process. Excluding the random forest library, the entire
MineGuard infrastructure only requires 282 lines of code. We have also made
the source code and training/test data publicly available.1
Testbed: All experiments were performed on a machine with an Intel Core-i7
2600K processor (Sandy Bridge), an NVIDIA GTX 960 GPU (Maxwell) and
8 GB of DDR3 RAM. We ran Linux 3.16.0-44 for both desktop (native) and
server (virtualized) environments. For collecting CPU-based training data, each
application was profiled for 20 seconds, with one sample being collected every
2 seconds, for a total of 10 samples per application and miner. This provided
ample data for high accuracy classification with negligible overhead (discussed in
Section 6). For GPU-based training data, samples were only collected once at
the end of a 120 second execution window - unlike perf, nvprof does not allow
live periodic sampling of running applications.
Cryptocurrencies and Miners: Other than Bitcoin, the seven additional
cryptocurrencies listed in Table 1 are still actively mined using CPUs and GPUs,

1 URL to source code has been removed for the review process.

Mitigating Covert Mining Operations in Clouds and Enterprises

Cryptocurrency Proof-of-Work
Algorithm

CPU Miner GPU Miner

Bitcoin SHA256 cpuminer-multi-windows,
bfgminer-5.1.0,
cgminer-2.11.4

-

Bytecoin CryptoNight cpuminer-multi-windows ccMiner-cryptonight-0.17

Dash X11 cpuminer-multi-windows ccMiner-1.6.6-tpruvot

Litecoin Scrypt cpuminer-multi-windows cudaminer-2014-02-28

Quarkcoin BLAKE, Blue Midnight
Wish, Gr∅stl, JH, SHA-3

and Skein

cpuminer-multi-windows ccMiner-1.6.6-tpruvot

Vertcoin Lyra2RE cpuminer-multi-windows ccMiner-1.6.6-tpruvot

Ethereum Ethash (Modified
Dagger-Hashimoto)

ethminer-1.3.0 ethminer-1.3.0

Zcash Equihash nheqminer-0.5c nheqminer-0.5c

Table 1. Cryptocoins we used along with their PoW algorithms and CPU/GPU miners.

and hence together comprise a realistic group for mining in the cloud. Furthermore,
the currencies were chosen to evaluate a variety of mining algorithms and provide
maximum coverage across the entire algorithm-space for mining-related PoW
algorithms. The coins were also chosen to represent a large fraction of the market
cap for mine-able coins (excluding Ripple, which cannot be mined, or coins with
similar PoW algorithms, like Monero which is based on the same algorithm as
Bytecoin). To mine these coins, we used cryptominers that were open-source and
readily available online. Table 1 lists the cryptominers and mining algorithms for
each of the cryptocurrencies used. Each miner was run using as many cores as
available on the test system (8 cores for both the non-virtualized and virtualized
environment) and public mining pools were used to mine coins. Using public
pools ensured that our signature also incorporated the I/O aspects of miners, in
addition to the dominant compute aspects. Finally, each miner was profiled in
three different operating environments; OS (running standalone in a host OS),
VM (running standalone in a guest OS) and VM+Int (running simultaneously
with interfering applications in a guest OS).
Benchmarks and Cloud Workloads: To obtain signatures for non-mining
applications, we chose various workloads from representative benchmark suites
like CloudSuite (v3.0) [37], SPEC 2006 [20], Rodinia [33] and Parboil [49]. The
benchmarks were chosen to cover a wide variety of domains, such as Hadoop
workloads, scientific computing, AI simulations, data mining, graph analytics,
web searching etc.; and a wide variety of workload characteristics such as compute
and memory intensity, branch and cache behavior, and latency vs. throughput
sensitivity. Furthermore, our mix of benchmarks consisted of both single-threaded
and multi-threaded applications. We tested a total of 39 applications which we
feel are representative of a real-world cloud setting.
Classification Algorithm and Evaluation Metrics: For evaluating our multi-
class classification problem, we resorted to standard metrics like—precision, recall,
and F-score [47] which is the harmonic mean between precision and recall. Since
we do not know the underlying distribution of the different features for miners,
we tried out different non-parametric classifiers like k-Nearest Neighbor (k-NN),
Multiclass Decision Tree and Random Forest. We found that in general, ensemble-

Mitigating Covert Mining Operations in Clouds and Enterprises

0

20

40

60

80

100

120
Local Memory Load Throughput (GB/s)

0

6

8

1
Core Occupancy

Fig. 2. Difference in behavior of GPU miners and GPU applications. Miners are shown

in red; applications are shown in blue.

based approaches like Random Forest outperformed the other classifiers. During
training, features from all applications (i.e., both miners and non-miners) were
used to train the classifier. We used a random forest with 50 decision trees. In
the test phase, the classifier predicted the most probable class for an unseen
feature vector.2

6 Evaluation

In this section we show empirical results from MineGuard, and present a discussion
on various aspects and limitations of our system. Before moving onto the first
set of results, we discuss the empirical overhead of our HPC-based approach.
Prior work has shown in detail that the overhead of sampling counters, even in
microsecond intervals (much more fine-grained compared to our approach), is
negligible [35,46]. We observed very similar results with small values (< 0.01%)
for various polling intervals, hence, we do not present results for the overhead
incurred due to space limitations and instead focus on other details surrounding
MineGuard. Additionally, we found that the average time required to match a new
sample against the classifier was 8 ms, bulk of which was spent in file I/O such
as formatting the profiling data and reading the signature from disk. However,
unnecessary I/O can be eliminated by keeping the signature in main memory.
Finally, actual classification only took 32 µs, showcasing the low overhead nature
of our design.
Uniqueness of GPU Mining Signatures: As explained above, MineGuard
uses HPC-based signatures to detect miners in real time. We justify our choice
of HPCs by demonstrating the uniqueness of mining behavior on GPU instances
compared to other common and popular GPU-based workloads. Figure 2 presents
this comparison between mining software and some popular and common GPU
workloads taken from the Rodinia [33] and Parboil [49] GPU-benchmark suites.
The figure shows the behavior of two different profiling metrics, out of a total of 28
GPU metrics, across four miners and six applications. We ran these experiments
for several other benchmarks from the aforementioned benchmark suites and
found consistent results. However, those results have been omitted for brevity.
Some observations from our GPU results are discussed below.
2 Unless otherwise stated, all experiments perform binary classification.

Mitigating Covert Mining Operations in Clouds and Enterprises

Miners have significantly less core occupancy (number of actual threads out
of maximum possible threads) than non-mining applications. This is due to the
fact that, in general, it is a good practice to run as many threads as optimally
possible on a GPU core, and therefore non-mining applications tend to have
high core occupancy. Miners, on the other hand, also optimize for memory per
warp (the basic unit of execution in NVIDIA GPUs), and aim to avoid creating
bottlenecks in the memory system. Consequently, they usually exhibit low core
occupancies.

Another noticeable difference between miners and non-mining applications is
their usage of local memory. Local memory in NVIDIA GPUs is used for register
spilling and per-thread local data. However, despite its name, local memory
physically resides in the main memory of the GPU and as such it is not as fast
as scratchpads or texture caches. As a result, GPU application programmers
tune their code to minimize local memory usage as much as possible. As can
be seen in Figure 2, the six different non-mining applications have in fact no
local memory usage (an exception is MRI, which does use local memory but
does so minimally). Miners, in stark contrast, exhibit high usage of local memory.
This is a consequence of the fact that mining algorithms require a significant
number of registers and this in turn results in a significant number of register
spills (note: the high register usage of these algorithms also contributes to the
low core occupancy).

As evident, there is a marked difference between the performance counter
profiles of GPU miners and typical GPU applications. It is precisely these
differences that our classification algorithm relies upon to detect miners with
high accuracy.
Uniqueness of CPU Mining Signatures: As with GPU-based miners, we
collected HPC-based signatures for CPU-based miners as well. These signatures
were then compared to common CPU-based workloads from CloudSuite and
the SPEC2006 benchmark suite to distinguish CPU miners from non-mining
applications. The unique and distinct characteristics of CPU-based miners, similar
to their GPU counterparts, can be seen in Figure 3. The figure shows subgraphs
for two different HPCs, out of a total of 26 CPU HPCs shown later in Table 2.
Both subgraphs show a live-trace of a HPC’s value during the execution of a
CPU-based miner mining Litecoin and four non-mining applications; namely data
caching (memcached server), AI (game of Go), H264 (hardware video encoding)
and NAMD (molecular dynamics). The results from other benchmarks have been
omitted for clarity.

In both graphs, the mining signature stands out. Since miners repeatedly
run a small set of computations over and over again for millions of times, their
resource usage is consistent throughout their execution. In other words, miners
generally do not exhibit irregular phases as most common applications do. Rather,
miners possess regular and structured phases. This consistency in signature is
represented by a step function like recurring pattern in both graphs (red line).

On the other hand, non-mining applications and workloads have phases that
are noticeably different. While the phases are, like miners, repeated in regular

Mitigating Covert Mining Operations in Clouds and Enterprises

0
200000000
400000000
600000000
800000000

1E+09
1.2E+09
1.4E+09
1.6E+09

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

67
6

Frontend Stalls

Miner Data Caching AI H264 NAMD

0

50000000
100000000

150000000
200000000

250000000
300000000

350000000

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

67
6

L1 Stores

Miner Data Caching AI H264 NAMD

Fig. 3. Difference in behavior of a Litecoin CPU miner and four representative CPU

applications. The x axis shows time in units of 100 milliseconds (miner in red).

Fig. 4. Similarity in behavior of three different Bitcoin mining softwares. The x axis

shows time in units of 100 milliseconds.

intervals, the behavior of each phase is much more irregular and possesses a high
degree of variance (a finding consistent with prior research [35]). These patterns
are particularly visible for H264 (black line). For example, the L1 Store curve of
H264 is rhythmic but irregular, and, in fact, we found that troughs in load count
correspond to peaks in store count. Similarly, another interesting observation is
that for the Litecoin miner, the curves for the HPCs closely follow each other -
an increase in one is accompanied by an increase in the other, which is generally
not the case in the other workloads. Finally, even though data caching exhibits a
slight similarity to Litecoin for these two HPCs, it is quite different for all metrics
taken together. We take away the following insight from these results: CPU-
miners exhibit a unique HPC-based signature and this signature can be effectively
leveraged to detect virtual machines that are performing cryptocurrency mining.
Signature Homogeneity Within a Coin: Hackers usually employ various
techniques and mechanisms to bypass detection mechanisms. They use poly-
morphic, metamorphic and obfuscated malware to fool anti-virus software and
runtime checkers by completely overhauling their codebase. To show MineGuard’s
resilience against these techniques, we demonstrate how three completely diffe-
rent miner implementations that are mining the same coin still exhibit the same
HPC-based signature.

Figure 4 shows two graphs, one per HPC, for three different miners all mining
for Bitcoin. The implementations of these miners are quite different from one
another, however, the graphs all show similar HPC patterns, thereby backing our
claim that the mining signature is consistent across different implementations.

Mitigating Covert Mining Operations in Clouds and Enterprises

600000000

1E+09

1.4E+09

1.8E+09

2.2E+09

2.6E+09

Frontend Stalls

Litecoin Bytecoin Dashcoin Quarkcoin Vertcoin

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

L1 Stores

Litecoin Bytecoin Dashcoin Quarkcoin Vertcoin

Fig. 5. Similarity in behavior of various cryptocurrencies (algorithms). The x axis shows

time in units of 100 milliseconds.

The reason behind this, as mentioned previously, is that at their core, all miners
have to abide by a fixed PoW algorithm. Not only does this limit the amount
of variability that can be afforded by different implementations, but since the
algorithm is run millions of times, it dwarfs any differences that are present
in polymorphic or metamorphic versions of the mining malware. Consequently,
the resulting signatures only have minor variations from miner to miner. These
variations are broadly manifested across three categories. Phase shifts (where
the patterns are offset from each other by a small time delta), differences in
magnitude and occasionally in curve shape. We found that these changes are
rare and usually impact one or two HPCs largely keeping the signature similar
across implementations. MineGuard exploits this uniformity during its detection
phase allowing it to catch altered versions of a mining malware.
Signature Homogeneity Across Coins: We also claim that different crypto-
currencies have similar signatures due to the nature of cryptomining. As evidence,
we present the signatures of five different cryptocurrencies in Figure 5. The
figure shows a subset of the signatures of cryptominers mining Litecoin, Bytecoin,
Dashcoin, Quarkcoin and Vertcoin. It is immediately obvious that all five signatu-
res follow the same pattern - periods of constant computation (the flat part of the
curves, corresponding to hashing) punctuated by phases of exponentially decaying
irregular code that executes when new blocks are found, the mining difficulty is
changed, I/O is performed, etc. The only differences are in the magnitudes of
the various HPC values, which can be attributed to different PoW algorithms
having higher or lower operation counts. However, when looking at the combined
signature of all HPCs, the similarities dwarf the differences, as shown in Figure 5.
Effects and Characterization of Noise: So far, we have discussed the sig-
natures of miners and various other applications that were obtained in a non-
virtualized environment (OS). Although these signatures aptly present the simi-
larities and differences between various miners and non-mining applications, they
do not account for VM noise that would naturally be added when the aforementi-
oned software are executed in a virtualized environment (guest OS) and profiled
from the hypervisor. Since monitoring virtual machines is the primary role of
MineGuard, we characterize this noise and study its effects on mining signatures.

By performing per feature noise profiling (on both OS and VM environments
using all miner and cloud workloads) for all 26 HPCs (see Table 2), we found

Mitigating Covert Mining Operations in Clouds and Enterprises

Pr
ob

ab
ilit

y
D

en
si

ty

0 300 600
1
2
3
4
5
6

x 10

Noise Value

0

empirical
tlocationscale
generalized extreme value
logistic
normal
generalized pareto

-3

800

(A)

0 1 2 4 5 6

x 1010

1

2 x10-10

3
Noise Value

0

HPC cycles : nakagami
HPC instructions : burr
HPC stalled-cycles-frontend : nakagami
HPC stalled-cycles-backend : burr

(B)
Fig. 6. (A) The fitting process via which we arrive at the final best fit distribution

(tLocation-Scale) for the context switch counter (ID 10). (B) Noise distribution for

number of instructions counter (ID 2). The best fit distribution in this case is Burr.

that roughly one-fourth of the counters show variation in values due to noise e.g.,
cycles, instructions, stalled-cycles-fronted, context switches etc. Figure 6A shows
the process via which we arrived at the best fit, which was determined using the
Akaike Information Criterion (AIC) [28]. The empirical data points (blue bars)
represent the noise added as we moved from native to in-VM execution. The
colored curves represent various distributions superimposed on top. As evident, a
vivid pattern can be extracted based on the distribution and later used for error
correction. Similarly, Figure 6B shows the probability density functions for a few
HPC counters. The best fit distributions in the depicted cases were Nakagami

(cycles, stalled-cycles-frontend) and Burr (instructions, stalled-cycles-backend)
distributions. Other HPCs, such as context switches, followed the tLocation-Scale
distribution. We found that three-fourths of the counters have negligible change
to their values or patterns when we move from OS to VM. This fact justifies our
choice of HPCs for MineGuard given that virtualization has limited impact on
HPCs. Furthermore, if necessary, the discovered distributions can be factored
into the signatures to develop error-corrected profiles for even more robust and
accurate signatures.

To visually demonstrate how this noise distorts signatures, we present graphs
for native vs in-VM execution of miners in Figure 7A. The graph depicts the values
of the L1 Loads counter. The curves have become more jagged and noisy as the
system processes of the guest OS influence counter values, but their involvement
results in a minimal degradation of the signature. For example, the peaks and
troughs can still be clearly seen. Similarly, the slopes are unchanged and the
noisy plateaus are still flat, preserving the consistent behavior of miners. All this
follows from the fact that most HPCs do not suffer from virtualization-induced
noise as shown above and maintain unique patterns and characteristics associated
with mining.
MineGuard Under an Active Adversary: In an attempt to throw off Mi-
neGuard, a clever attacker could selectively create noise in the HPCs by running
computations in parallel that influence counters not involved in mining. This
would artificially inflate the values and modify patterns of certain HPCs that
are irrelevant to the mining signature and appear as a benign workload to the
classifier. To check the effectiveness of this scheme we performed an experiment

Mitigating Covert Mining Operations in Clouds and Enterprises

False Positives False Negatives

Number of Threads
(B)

120000000

200000000

280000000
L1 Loads (count/100 ms)

100000000

180000000

260000000

1 301 601 901
BFGMiner CGMiner CPUMiner

(A)

OS

VM

Fig. 7. (A) Effect of virtualization-induced noise on L1 Loads for various miners all

mining for Bitcoin. The x axis shows time in increments of 100 milliseconds. (B)

Degradation of mining hash rate as the number of masking threads is increased. The

hash rate falls consistently while the detection rate remains constant throughout, with

only a slight increase in false negatives as 8 threads are used.

with Litecoin where we modified the miner’s code to run a computation in pa-
rallel that predominantly affects the set of mining-orthogonal counters (HPCs
not showing significance use during mining). We measured how increasing the
number of threads for the extra computation negatively impacts the total hash
rate along with the corresponding reduction in MineGuard’s detection accuracy.
Figure 7B captures this relationship for 100 different runs of the aforementioned
experiment. As expected, increasing the number of threads for the camouflaging
computation severely degrades the hash rate (base hash rate is approximately 30
kH/s). However, it has very little impact on the detection rate meaning that the
exercise would not be of benefit to the attacker. Granted, the experiment covers
only a small subset of the overall computation space available to the attacker,
we still feel that the impact suffered by the hash rate will be much more severe
compared to the hit taken by the classifier in nearly all cases.
Feature (Counter) Selection: We now present a formal approach to feature
(counter) selection to determine the importance of each counter, both by itself
and in relation to other counters. When looking at each counter individually, we
use mutual information to determine its importance. The mutual information
(MI) of two random variables is a measure of the mutual dependence between
the two variables. More specifically, it quantifies the “amount of information”
(in units such as bits or entropy) one random variable contributes to generating
a unique signature for the miner. When looking at multiple features together,
their importance as a whole is represented by joint mutual information (JMI), a
measure of the features’ combined entropy. JMI can then be used to rank features
from most important to least important. In turn, the ranking can be used to
choose the minimum number of features that provide the best classification
accuracy.

Table 2 lists the 26 different counters that were available on our system. To
obtain MI and JMI for each counter, we used FEAST, an open source toolbox
for feature selection algorithms [31]. The entropy (MI) of all 26 counters, both
in an OS setting and in a VM setting, is shown in Figure 8. It can be seen that

Mitigating Covert Mining Operations in Clouds and Enterprises

Name of Counter Counter
ID

OS
Rank

VM
Rank

Explanation

cycles 1 4 4 # of CPU clock cycles

instructions 2 6 6 # of executed instructions

branches 3 2 19 # of branch instructions

branch-misses 4 16 15 # of mispredicted branches

bus-cycles 5 8 1 # of useful bus cycles

stalled-cycles-frontend 6 1 5 # of stalled cycles in frontend of pipeline

stalled-cycles-backend 7 11 16 # of stalled cycles in backend of pipeline

task-clock 8 3 3 CPU time in milliseconds

page-faults 9 26 26 # of page faults

context-switches 10 24 24 # of context switches

cpu-migrations 11 25 25 # of migrations of profiled app

L1-dcache-loads 12 13 14 # of loads at L1 data cache

L1-dcache-load-misses 13 21 13 # of load misses at L1 data cache

L1-dcache-stores 14 7 7 # of stores at L1 data cache

L1-dcache-store-misses 15 14 8 # of store misses at L1 data cache

L1-dcache-prefetch-misses 16 18 17 # of misses at L1 cache that did not benefit
from prefetching

L1-icache-load-misses 17 15 10 # of instruction fetches missed in the L1
instruction cache

LLC-loads 18 12 11 # of loads at the Last Level Cache

LLC-stores 19 20 2 # of loads that missed in the data TLB

LLC-prefetches 20 9 20 # of stores that queried the data TLB

dTLB-loads 21 5 12 # of stores at the Last Level Cache

dTLB-load-misses 22 17 21 # of prefetches at the Last Level Cache

dTLB-stores 23 10 9 # of loads that queried the data TLB

dTLB-store-misses 24 23 22 # of stores that missed in the data TLB

iTLB-loads 25 19 23 # of instruction fetches that queried the
instruction TLB

iTLB-load-misses 26 22 18 # of instruction fetches that missed in the
instruction TLB

Table 2. HPCs used for CPU-based signatures along with their JMI rank and explana-

tion.

features can be broadly divided into three categories. First, certain features like
feature ID 1 (clock cycles), 5 (bus cycles) and 8 (task clock) hold a significant
amount of information in both OS and VM environments. Second, features like
feature ID 9 (page faults) and 10 (context switches) contribute negligibly to
the classification process in both environments. Finally, the remaining features
provide varying amounts of information depending upon the environment. While
the general trends are the same in both environments, the differences between
the two graphs present the importance of performing feature selection for each
environment.

We present feature ranking results for both OS and VM environments based
on JMI in Table 2. Feature rankings mimic the patterns observed in MI - certain
features like 2 (instructions) do not change rank while others like 3 (branches)
change rank significantly. Another interesting observation is that system level
events like page faults and context switches have a low rank while purely hardware-
based events like loads and stores are ranked highly in both scenarios.
Classification Accuracy: We now present results for MineGuard’s miner
detection performance in both closed and open world setting. A closed world

Mitigating Covert Mining Operations in Clouds and Enterprises

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

EN
TR

O
PY

FEATURE NUMBER
(A)

(B)

(A)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

EN
TR

O
PY

FEATURE NUMBER
(B)

Fig. 8. The mutual information (entropy) contained within each hardware performance

counter for (A) an OS environment, (B) a VM environment.

setting is a scenario in which every cryptocurrency that MineGuard can be
requested to detect is a part of the signature database. The test sample may
vary from the signatures stored in the database but as we have previously shown,
miners have unique and consistent signatures, increasing the likelihood if the test
sample is from a miner, it will be matched to a miner in the signature database.

Closed World Scenario F-Score (CI) False Positives (CI) False Negatives (CI)

OS-Level 99.69% (0.13%) 0.22% (0.11%) 0.29% (0.25%)

VM-Level 99.69% (0.17%) 0.27% (0.14%) 0.26% (0.18%)

VM-Interference 99.15% (0.11%) 2.12% (0.29%) 0.04% (0.03%)

Open World Scenario F-Score (CI) False Positives (CI) False Negatives (CI)

OS-Level 94.91% (1.02%) 4.50% (1.13%) 2.58% (1.64%)

VM-Level 93.58% (1.33%) 5.63% (1.61%) 4.52% (2.41%)

VM-Interference 95.82% (0.86%) 6.77% (1.45%) 2.53% (1.54%)

Table 3. Classification results for three different operating environments in a closed

world setting. Each result’s 95% confidence interval is written in brackets.

Table 3 shows our results for this scenario where all values are reported after
100 runs. Since MineGuard has been trained on every cryptocurrency in the
test set, it achieves an exceptionally high miner detection accuracy. It achieves
≈ 99.5% accuracy with a false positive rate (FPR) of 0.22% and false negative
rate (FNR) of 0.29% when classifying miners running solely in either the OS and
VM setting. This equates to near-perfect miner detection and implies that if a

known cryptocurrency is being mined in an OS or a VM, MineGuard will detect

it almost every time. When classifying miners running with other applications,
the average F-score drops to 99.15% and FPR increases to 2.12%, while FNR
remains at ≈ 0%. Even in an open world setting, where all test signatures are
unseen (i.e., miners in the test set are unknown to the classifiers), MineGuard
still achieves accuracy ≈ 95% for all three cases. Though the results are slightly
worse than a closed world setting, they are still satisfactory overall. Furthermore,
as we explain in Section 7, unseen signatures are rare as zero-day coins are an
unlikely scenario.

The results shown in Table 3, have been computed on a per sample basis.
This means that the classifier treats each 2 second sample of HPC values as an
independent test vector rather than labeling all samples collectively as miner/non-
miner. An alternate way is to use per application classification and treat all
samples collected from a running process as a single test vector. This approach
has the advantage that given the number of samples for a particular application,
the classification can be done using various ratios. For example, if 5 samples for

Mitigating Covert Mining Operations in Clouds and Enterprises

an application are available, if one is categorized as miner the entire application
is labeled as a miner. Similarly, we can use a scheme where all samples need
to be classified as a miner or use a simple majority rule (3 out of 5 classified
as miner then app is miner). In each case, the corresponding F-score, FPR and
FNR would be different. In Table 4, we present open world results for a simple
majority scheme (though other settings can also be used such as classification
based on 33% match or 75% match etc.) using per application testing .

Open World Scenario F-Score (CI) False Positives (CI) False Negatives (CI)

OS-Level 93.85% (2.68%) 0.0% (0.0%) 9.70% (3.77%)

VM-Level 91.67% (3.16%) 0.0% (0.0%) 16.33% (5.83%)

VM-Interference 96.32% (1.75%) 0.0% (0.0%) 7.99% (4.10%)

Table 4. Classification results for three different operating environments in a open

world setting when all samples are treated collectively (per application processing).

The results show that the F-score is still high. The corresponding FPRs for
our simple majority scheme are zero in all cases, which eliminates the primary
concern in our setting as legitimate tenants would rarely be flagged or shut down.
The reason for the 0% FPR is that previously, we were classifying each 2 second
HPC sample individually. In such a scenario there is a possibility that a particular
sample belonging to a non-miner exhibits HPC values matching those of a miner
(perhaps due to a hashing intensive phase in the execution). However, since now
we’re looking at all samples of a single application collectively, the chances of all
samples being hashing intensive (or even a majority of them) for a non-miner app
are rare and hence the 0% FPR.The corresponding FNRs are a bit high, however
this is less of a concern for the following reasons. First, since mining is commonly
a long-term activity the attacker will eventually get flagged in a subsequent scan
even if he evades the classifier once or twice. Second, if the attacker uses multiple
VMs to form a personal mining pool, then with high likelihood one of their VMs
will get flagged (even if other VMs successfully evade the classifier), which would
trigger MineGuard to immediately scan all other VMs that are part of the same
deployment again and if more VMs are caught, the cloud provider can do a more
comprehensive check of the entire deployment using VMI or other more invasive
tools.

Taken collectively, these results indicate that MineGuard is extremely adept
at identifying miners running in any operating environment. Even in the worse
case of detecting miners running in noisy environments, it achieves very high
accuracy.
Effect of Signature Size on Accuracy: Figure 9 captures the relationship
between the size of the signature (number of top counters used) and the accuracy
of detection in a VM environment for both open and closed world settings. As
shown in Figure 9A, for the closed world scenario (triangles) even when only 2
counters are used, we achieve an average F-score above 99.5%, an average false
positive rate (FPR) below 0.5% and an average false negative rate (FNR) of
approximately 0, shown in Figure 9B. This implies that MineGuard can actually
work with very small signature footprints speeding up all processes from profiling

Mitigating Covert Mining Operations in Clouds and Enterprises

80

85

90

95

100

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

AV
G

. F
SC

O
RE

 (%
)

NUMBER OF FEATURES

Closed World

Open World

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1011121314 1516 1718 1920 212223242526

AV
G

. F
P

AN
D

 F
N

 R
AT

E
(%

)

NUMBER OF FEATURES

FP Closed World

FN Closed World

FP Open World

FN Open World

(B)(A)

Fig. 9. Accuracy of miner classification in a VM environment, in terms of (A) average

F-score, (B) average false positive rate and average false negative rate, as the number

of features is increased.

to matching. Similarly, in the open world case (circles) with only 3 counters
the average F-score is around 85% and jumps to 90% if we consider the top 7
counters. Increasing the size further brings marginal increases that ultimately
take the detection rate close to 95% for all 26 counters. An opposite downward
trend is observed in the average values of FP and FN for the open world case as
shown in Figure 9B, with the rates declining all the way to roughly 5% when
the entire vector of HPCs is used. These numbers might appear a bit high, but
as we argue in Section 7 the open world case is highly unlikely as unseen mining
algorithms are an extremely rare possibility.

7 Discussion

We discuss a few aspects of our work in this section and explore potential
limitations.
Custom or Zero-Day Cryptocurrency: Is MineGuard vulnerable to zero-
day or custom coins? We believe it is not. By definition, zero-day or custom
coins do not exist because for a coin to have any dollar value, it first needs to
have a known PoW algorithm, needs to be recognized by the cryptocommunity
as mathematically sound and has to be adopted at a moderate-to-large scale
for the core network to exist. Therefore, the first time a new piece of malware
for some new coin makes an appearance in the wild, it would already be well-
known in the cryptocurrency community, giving cloud vendors enough time to
train MineGuard on the new coin’s signature, as its algorithm would be public
knowledge as mentioned above.
Evasion: An attacker can employ several techniques to try and evade Mine-
Guard’s detection scheme. First, they could employ known techniques of software
obfuscation. However, since we target the algorithm and not the implementation,
we believe that the attacker would have limited success (as shown in Section 6).
Second, the attacker could artificially manipulate the counters by performing
alternate computations that modify a distinct set of counters orthogonal to the
ones used in mining. Again, as we have shown in Section 6, this would severely
penalize the hash rate of the attacker while having very limited impact on his
chances of evading MineGuard. Thirdly, the attacker could attempt to stay
under the radar and mine at an extremely low hash rate. Theoretically, this is

Mitigating Covert Mining Operations in Clouds and Enterprises

a limitation since the attacker can evade MineGuard by sticking to low hash
rates. However, we argue that the whole exercise becomes non-profitable for the
attacker and nullifies the whole point of mining on clouds. Furthermore, low hash
rates eliminate the original problem of resource abuse making it less of a nuisance.
Finally, the attacker could try to determine when the VM is being profiled by
MineGuard and stop mining temporarily. However, there are numerous issues
with this evasion scheme. First, since there is no measurable profiling overhead,
it is hard for an adversary to tell if their VM is being profiled. Second, instead of
monitoring the VMs in a round-robin fashion, the hypervisor can monitor the
VMs randomly, making it impossible to predict when a VM would be profiled.
Coin Diversity: We could not perform analysis on all cryptocurrencies available
in the market and chose to work with a popular subset (choosing coins with
distinct algorithms and ignoring those which were forks of popular coins) as shown
in Table 1. Additionally, with the above restriction in mind we selected coins that
collectively comprise the largest share of market cap. Also, we justify our choice
by highlighting that most cryptocurrency exchanges, like Kraken [23], only deal
with the top 25–30 cryptocurrencies, as other altcoins have exceptionally low
dollar value and profit margins from transactions are very low [22]. Moreover,
documented cases of cryptocurrency Trojans have been mostly limited to the top
10–15 coins [12, 13, 16,21,24]. Hence, attackers avoid wasting precious hashes on
less valuable coins, which is why we chose our subset of popularly used coins.
Nevertheless, we list this as a limitation, since the possibility, however minute, of
an excluded coin’s signature matching a cloud app still remains.

8 Related Work
Cloud abuse has become a hot topic of research. Recent efforts [40, 52] have
been geared towards developing a sound understanding of the problems and
vulnerabilities inherent to clouds. Others have demonstrated novel ways of
exploiting these vulnerabilities by building practical systems that are of value to
attackers, such as file sharing applications [51], unlimited storage banks [43] and
email-based storage overlays [48]. To mitigate these concerns, researchers have
proposed various Virtual Machine Introspection (VMI) approaches [36,42,45].
However, some of these are voluntary and require user participation [30], which
of course the attacker wants no part of, and others have a large overhead [41].
Furthermore, these VMI-based approaches are designed to observe the memory,
disk and processor state of customers’ VMs, which is a serious privacy concern
given the sensitive nature of customer data.

A different yet related line of work attempts to describe the infrastructure and
mechanism of mining botnets. Huang et al. [39] present a thorough investigation
of mining ecosystems in the wild. They claim that mining is less profitable than
other malicious activities, such as spamming or booter-renting (DDoS for hire),
and should be used as a secondary monetizing scheme. However, we believe that
it is unfair to compare mining profits with other monetizing activities as the price
of coins varies substantially over time and as of this writing, the value of one
Bitcoin is a $1000 (and rising) as opposed to $100 in 2013, which demonstrates
that mining can generate an order of magnitude more revenue now. Furthermore,

Mitigating Covert Mining Operations in Clouds and Enterprises

as mining uses an orthogonal set of resources (CPU/GPU and memory) compared
to DDoS attacks (network), we postulate that botnet-herders should maximize
their profits by running various resource-disjoint monetizing activities in parallel
making a strong case for covert cryptomining. Indeed, Sophos Security presented
evidence that mining botnets could potentially generate around $100,000 per
day of profits for herders [8].

Finally, there has been much research on detecting generic malware using
architectural and microarchitectural execution patterns, such as HPCs, with
differing results. Demme et al. [35] built a system for detection of generic
malware and demonstrate the feasibility of the design based on ARM (Android)
and Intel (Linux) platforms. Other researchers [38,50,55] have also used low-level
hardware features to promising success, furthering the work of Demme et al. In
addition to generic malware, HPCs have also been successfully used to detect
kernel-level rootkits [53], side-channel attacks [34], firmware modifications [54] etc.
However, none of these previous works try to accommodate the noise introduced
by virtualization, as we do in this work.

9 Conclusion

We present MineGuard, a userspace tool that prevents abuse of resources at
the hands of hackers interested in mining cryptocurrencies on others’ resources.
Whether the mining operation is local (restricted to one VM) or being conducted
in a pool of participating VMs, MineGuard can successfully detect and shutdown
the illegitimate mining “ring”. We empirically demonstrate that our design
imposes negligible overhead to legitimate tenants and can detect mining in real-
time with high precision. If multiple VMs are involved in mining, MineGuard
can collaborate with other MineGuard instances to expose the entire footprint
of the mining deployment. For detection, MineGuard uses signatures based on
Hardware Performance Counters for both CPU and GPU-based miners. The
fact that MineGuard runs on top of the hypervisor or the host OS prevents
miners running inside the VMs from subverting it despite root access on the
guest. We also account for the noise generated as a result of virtualization to
provide error correction for our detection mechanisms. In the future, we plan
to extend MineGuard to accurately detect other types of malwares in highly
multiplexed and virtualized environments.

References

1. Bitcoin Anonymizer TOR Wallet. https://torwallet.com/

2. CryptoNight. https://en.bitcoin.it/wiki/CryptoNight

3. CUDA Toolkit Documentation. https://tinyurl.com/z7bx3b3

4. Government employee caught mining using work supercomputer. https://tinyurl.

com/mrpqffd

5. ABC employee caught mining for Bitcoins on company servers (2011). https:

//tinyurl.com/lxcujtx

6. Data Center Power and Cooling (2011). CISCO White Paper

7. How to Get Rich on Bitcoin, By a System Administrator Who’s Secretly Growing

Them On His School’s Computers (2011). https://tinyurl.com/lwx8rup

https://torwallet.com/
https://en.bitcoin.it/wiki/CryptoNight
https://tinyurl.com/z7bx3b3
https://tinyurl.com/mrpqffd
https://tinyurl.com/mrpqffd
https://tinyurl.com/lxcujtx
https://tinyurl.com/lxcujtx
https://tinyurl.com/lwx8rup

Mitigating Covert Mining Operations in Clouds and Enterprises

8. The ZeroAccess Botnet - Mining and Fraud for Massive Financial Gain (2012).

https://tinyurl.com/ldgcfao
9. Online Thief Steals Amazon Account to Mine Litecoins in the Cloud (2013).

https://tinyurl.com/mzpbype
10. Harvard Research Computing Resources Misused for âĂŸDogecoinâĂŹ Mining

Operation (2014). https://tinyurl.com/n8pzvt6
11. How Hackers Hid a Money-Mining Botnet in the Clouds of Amazon and Others

(2014). https://tinyurl.com/mowzx73
12. List of Major Bitcoin Heists, Thefts, Hacks, Scams, and Losses (2014). https:

//bitcointalk.org/index.php?topic=576337
13. Mobile Malware Mines Dogecoins and Litecoins for Bitcoin Payout (2014). https:

//tinyurl.com/q828blg
14. NAS device botnet mined $600,000 in Dogecoin over two months (2014). https:

//tinyurl.com/myglgoa
15. US Government Bans Professor for Mining Bitcoin with A Supercomputer (2014).

https://tinyurl.com/k3ww4rp
16. Adobe Flash Player Exploit Could Be Used to Install BitCoinMiner Trojan (2015).

https://tinyurl.com/lhxzloa
17. Cloud Mining Put to the Test- Is It Worth Your Money? (2015). https://tinyurl.

com/zquylbo
18. Developer Hit with $6,500 AWS Bill from Visual Studio Bug (2015). https:

//tinyurl.com/zm3pzjq
19. Perf Tool Wiki (2015). https://tinyurl.com/2enxbko
20. Standard Performance Evaluation Corporation (2015). https://www.spec.

org/benchmarks.html
21. Coinbitclip Trojan: A Grave Threat to BitCoin Wallets (2016). https://tinyurl.

com/k73wdaq
22. Crypto-Currency Market Capitalizations (2016). https://coinmarketcap.com/
23. Kraken Bitcoin Exchange (2016). https://www.kraken.com/
24. Linux.Lady.1 Trojan Infects Redis Servers and Mines for Cryptocurrency (2016).

https://tinyurl.com/ka9ae4c
25. Randomized Decision Trees: A Fast C++ Implementation of Random Forests.

(2016). https://github.com/bjoern-andres/random-forest
26. Student uses university computers to mine Dogecoin (2016). https://tinyurl.

com/lubeqct
27. Supplemental Terms and Conditions For Google Cloud Platform Free Trial (2017).

https://tinyurl.com/ke5vs49
28. Akaike, H.: A new look at the statistical model identification. IEEE TAC 19 (1974)
29. Attila Marosi: Cryptomining malware on NAS servers (2016)
30. Baek, H.W., Srivastava, A., van der Merwe, J.E.: Cloudvmi: Virtual machine

introspection as a cloud service. In: 2014 IEEE International Conference on Cloud

Engineering
31. Brown, G., Pocock, A.C., Zhao, M., Luján, M.: Conditional likelihood maximisation:

A unifying framework for information theoretic feature selection. In: JMLR (2012)
32. C. Percival, S. Josefsson: The Scrypt Password-Based Key Derivation Function

(2012). IETF
33. Che, S., et al.: Rodinia: A benchmark suite for heterogeneous computing. In: Pro-

ceedings of the 2009 IEEE International Symposium on Workload Characterization
34. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-

channel attacks using hardware performance counters. IACR Cryptology ePrint

Archive 2015, 1034 (2015)

https://tinyurl.com/ldgcfao
https://tinyurl.com/mzpbype
https://tinyurl.com/n8pzvt6
https://tinyurl.com/mowzx73
https://bitcointalk.org/index.php?topic=576337
https://bitcointalk.org/index.php?topic=576337
https://tinyurl.com/q828blg
https://tinyurl.com/q828blg
https://tinyurl.com/myglgoa
https://tinyurl.com/myglgoa
https://tinyurl.com/k3ww4rp
https://tinyurl.com/lhxzloa
https://tinyurl.com/zquylbo
https://tinyurl.com/zquylbo
https://tinyurl.com/zm3pzjq
https://tinyurl.com/zm3pzjq
https://tinyurl.com/2enxbko
https://www.spec.org/benchmarks.html
https://www.spec.org/benchmarks.html
https://tinyurl.com/k73wdaq
https://tinyurl.com/k73wdaq
https://coinmarketcap.com/
https://www.kraken.com/
https://tinyurl.com/ka9ae4c
https://github.com/bjoern-andres/random-forest
https://tinyurl.com/lubeqct
https://tinyurl.com/lubeqct
https://tinyurl.com/ke5vs49

Mitigating Covert Mining Operations in Clouds and Enterprises

35. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan,

S., Stolfo, S.J.: On the feasibility of online malware detection with performance

counters. In: The 40th Annual ISCA 2013

36. Dinaburg, A., Royal, P., Sharif, M.I., Lee, W.: Ether: malware analysis via hardware

virtualization extensions. In: ACM CCS 2008

37. Ferdman, M., Adileh, A., Koçberber, Y.O., Volos, S., Alisafaee, M., Jevdjic, D.,

Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: A study

of emerging scale-out workloads on modern hardware. In: ASPLOS (2012)

38. Garcia-Serrano, A.: Anomaly detection for malware identification using hardware

performance counters. CoRR (2015)

39. Huang, D.Y., Dharmdasani, H., Meiklejohn, S., Dave, V., Grier, C., McCoy, D.,

Savage, S., Weaver, N., Snoeren, A.C., Levchenko, K.: Botcoin: Monetizing stolen

cycles. In: NDSS 2014

40. Idziorek, J., Tannian, M.: Exploiting cloud utility models for profit and ruin. In:

IEEE CLOUD 2011

41. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection and monitoring through

vmm-based "out-of-the-box" semantic view reconstruction. ACM Trans. Inf. Syst.

Secur. (2010)

42. Lengyel, T.K., Neumann, J., Maresca, S., Payne, B.D., Kiayias, A.: Virtual machine

introspection in a hybrid honeypot architecture. In: CSET ’12

43. Mulazzani, M., Schrittwieser, S., Leithner, M., Huber, M., Weippl, E.R.: Dark

clouds on the horizon: Using cloud storage as attack vector and online slack space.

In: 20th USENIX Security Symposium, 2011

44. National Science Foundation Office of Inspector General: SEMIANNUAL REPORT

TO CONGRESS (2014)

45. Payne, B.D., Lee, W.: Secure and flexible monitoring of virtual machines. In:

(ACSAC 2007)

46. Sembrant, A.: Low Overhead Online Phase Predictor and Classifier. Master’s thesis,

UPPSALA UNIVERSITET (2011)

47. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for

classification tasks. Information Processing and Management 45 (2009)

48. Srinivasan, J., Wei, W., Ma, X., Yu, T.: EMFS: email-based personal cloud storage.

In: NAS 2011

49. Stratton, J.A., et al.: Parboil: A revised benchmark suite for scientific and commer-

cial throughput computing. In: IMPACT Technical Report (2012)

50. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware

detection using hardware features. In: RAID 2014

51. Tinedo, R.G., Artigas, M.S., López, P.G.: Cloud-as-a-gift: Effectively exploiting

personal cloud free accounts via REST apis. In: IEEE CLOUD 2013

52. Vaquero, L.M., Rodero-Merino, L., Morán, D.: Locking the sky: a survey on iaas

cloud security. Computing (2011)

53. Wang, X., Karri, R.: Numchecker: detecting kernel control-flow modifying rootkits

by using hardware performance counters. In: The 50th Annual DAC 2013

54. Wang, X., Konstantinou, C., Maniatakos, M., Karri, R.: Confirm: Detecting firmware

modifications in embedded systems using hardware performance counters. In:

ICCAD 2015

55. Yuan, L., Xing, W., Chen, H., Zang, B.: Security breaches as PMU deviation:

detecting and identifying security attacks using performance counters. In: APSys

2011

